IDEAS home Printed from https://ideas.repec.org/a/plo/pntd00/0007395.html
   My bibliography  Save this article

Downgrading disease transmission risk estimates using terminal importations

Author

Listed:
  • Spencer J Fox
  • Steven E Bellan
  • T Alex Perkins
  • Michael A Johansson
  • Lauren Ancel Meyers

Abstract

As emerging and re-emerging infectious arboviruses like dengue, chikungunya, and Zika threaten new populations worldwide, officials scramble to assess local severity and transmissibility, with little to no epidemiological history to draw upon. Indirect estimates of risk from vector habitat suitability maps are prone to great uncertainty, while direct estimates from epidemiological data are only possible after cases accumulate and, given environmental constraints on arbovirus transmission, cannot be widely generalized beyond the focal region. Combining these complementary methods, we use disease importation and transmission data to improve the accuracy and precision of a priori ecological risk estimates. We demonstrate this approach by estimating the spatiotemporal risks of Zika virus transmission throughout Texas, a high-risk region in the southern United States. Our estimates are, on average, 80% lower than published ecological estimates—with only six of 254 Texas counties deemed capable of sustaining a Zika epidemic—and they are consistent with the number of autochthonous cases detected in 2017. Importantly our method provides a framework for model comparison, as our mechanistic understanding of arbovirus transmission continues to improve. Real-time updating of prior risk estimates as importations and outbreaks arise can thereby provide critical, early insight into local transmission risks as emerging arboviruses expand their global reach.Author summary: When novel infectious diseases like chikungunya or Zika emerge and threaten global spread, public health officials worldwide must assess the risk for local introductions and outbreaks. These assessments are made in anticipation of local case data, and officials must draw upon historic evidence from similar diseases or locations. Thus, accurate local risk assessments have most often been limited to retrospective analyses and have been unavailable in real-time during an emerging epidemic. Here we present a method that can harness both historic and current data to produce early risk assessments and update projections in real-time. We demonstrate our approach by estimating local transmission risk for Zika throughout the state of Texas. Our findings suggest that the majority of Texas counties face little risk for sustaining a Zika epidemic, and successfully predict the number of locally transmitted cases across the state. Real-time updating of local transmission risk estimates during an emerging epidemic can thus provide actionable, early insight for public health response as emerging arboviruses expand their global reach.

Suggested Citation

  • Spencer J Fox & Steven E Bellan & T Alex Perkins & Michael A Johansson & Lauren Ancel Meyers, 2019. "Downgrading disease transmission risk estimates using terminal importations," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 13(6), pages 1-19, June.
  • Handle: RePEc:plo:pntd00:0007395
    DOI: 10.1371/journal.pntd.0007395
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0007395
    Download Restriction: no

    File URL: https://journals.plos.org/plosntds/article/file?id=10.1371/journal.pntd.0007395&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pntd.0007395?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. O. Lloyd-Smith & S. J. Schreiber & P. E. Kopp & W. M. Getz, 2005. "Superspreading and the effect of individual variation on disease emergence," Nature, Nature, vol. 438(7066), pages 355-359, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tardy, Olivia & Lenglos, Christophe & Lai, Sandra & Berteaux, Dominique & Leighton, Patrick A., 2023. "Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes," Ecological Modelling, Elsevier, vol. 476(C).
    2. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    3. Moshe B Hoshen & Anthony H Burton & Themis J V Bowcock, 2007. "Simulating disease transmission dynamics at a multi-scale level," International Journal of Microsimulation, International Microsimulation Association, vol. 1(1), pages 26-34.
    4. Luc E. Coffeng & Sake J. de Vlas, 2022. "Predicting epidemics and the impact of interventions in heterogeneous settings: Standard SEIR models are too pessimistic," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S1), pages 28-35, November.
    5. Joseph B. Bak-Coleman & Ian Kennedy & Morgan Wack & Andrew Beers & Joseph S. Schafer & Emma S. Spiro & Kate Starbird & Jevin D. West, 2022. "Combining interventions to reduce the spread of viral misinformation," Nature Human Behaviour, Nature, vol. 6(10), pages 1372-1380, October.
    6. Kris V. Parag & Robin N. Thompson & Christl A. Donnelly, 2022. "Are epidemic growth rates more informative than reproduction numbers?," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S1), pages 5-15, November.
    7. Thomas Ash & Antonio M. Bento & Daniel Kaffine & Akhil Rao & Ana I. Bento, 2022. "Disease-economy trade-offs under alternative epidemic control strategies," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    8. Maarten Jan Wensink & Linda Juel Ahrenfeldt & Sören Möller, 2020. "Variability Matters," IJERPH, MDPI, vol. 18(1), pages 1-8, December.
    9. Lingcai Kong & Jinfeng Wang & Weiguo Han & Zhidong Cao, 2016. "Modeling Heterogeneity in Direct Infectious Disease Transmission in a Compartmental Model," IJERPH, MDPI, vol. 13(3), pages 1-13, February.
    10. Carolyn Ingram & Vicky Downey & Mark Roe & Yanbing Chen & Mary Archibald & Kadri-Ann Kallas & Jaspal Kumar & Peter Naughton & Cyril Onwuelazu Uteh & Alejandro Rojas-Chaves & Shibu Shrestha & Shiraz Sy, 2021. "COVID-19 Prevention and Control Measures in Workplace Settings: A Rapid Review and Meta-Analysis," IJERPH, MDPI, vol. 18(15), pages 1-26, July.
    11. Wayne M. Getz & Jean-Paul Gonzalez & Richard Salter & James Bangura & Colin Carlson & Moinya Coomber & Eric Dougherty & David Kargbo & Nathan D. Wolfe & Nadia Wauquier, 2015. "Tactics and Strategies for Managing Ebola Outbreaks and the Salience of Immunization," Post-Print hal-01214432, HAL.
    12. Robin N Thompson & Christopher A Gilligan & Nik J Cunniffe, 2016. "Detecting Presymptomatic Infection Is Necessary to Forecast Major Epidemics in the Earliest Stages of Infectious Disease Outbreaks," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-18, April.
    13. Kathrin Büttner & Joachim Krieter & Arne Traulsen & Imke Traulsen, 2013. "Efficient Interruption of Infection Chains by Targeted Removal of Central Holdings in an Animal Trade Network," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-12, September.
    14. Ellen Brooks-Pollock & Leon Danon & Hester Korthals Altes & Jennifer A Davidson & Andrew M T Pollock & Dick van Soolingen & Colin Campbell & Maeve K Lalor, 2020. "A model of tuberculosis clustering in low incidence countries reveals more transmission in the United Kingdom than the Netherlands between 2010 and 2015," PLOS Computational Biology, Public Library of Science, vol. 16(3), pages 1-14, March.
    15. Jonas I Liechti & Gabriel E Leventhal & Sebastian Bonhoeffer, 2017. "Host population structure impedes reversion to drug sensitivity after discontinuation of treatment," PLOS Computational Biology, Public Library of Science, vol. 13(8), pages 1-19, August.
    16. Zengmiao Wang & Peng Yang & Ruixue Wang & Luca Ferretti & Lele Zhao & Shan Pei & Xiaoli Wang & Lei Jia & Daitao Zhang & Yonghong Liu & Ziyan Liu & Quanyi Wang & Christophe Fraser & Huaiyu Tian, 2024. "Estimating the contribution of setting-specific contacts to SARS-CoV-2 transmission using digital contact tracing data," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    17. T Alex Perkins & Thomas W Scott & Arnaud Le Menach & David L Smith, 2013. "Heterogeneity, Mixing, and the Spatial Scales of Mosquito-Borne Pathogen Transmission," PLOS Computational Biology, Public Library of Science, vol. 9(12), pages 1-16, December.
    18. Otilia Boldea & Adriana Cornea-Madeira & João Madeira, 2023. "Disentangling the effect of measures, variants, and vaccines on SARS-CoV-2 infections in England: a dynamic intensity model," The Econometrics Journal, Royal Economic Society, vol. 26(3), pages 444-466.
    19. Mark D Jankowski & Christopher J Williams & Jeanne M Fair & Jennifer C Owen, 2013. "Birds Shed RNA-Viruses According to the Pareto Principle," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-9, August.
    20. Nathan O. Hodas & Jacob Hunter & Stephen J. Young & Kristina Lerman, 2018. "Model of cognitive dynamics predicts performance on standardized tests," Journal of Computational Social Science, Springer, vol. 1(2), pages 295-312, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pntd00:0007395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosntds (email available below). General contact details of provider: https://journals.plos.org/plosntds/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.