IDEAS home Printed from https://ideas.repec.org/a/dem/demres/v44y2021i12.html
   My bibliography  Save this article

Epilocal: A real-time tool for local epidemic monitoring

Author

Listed:
  • Marco Bonetti

    (Università Bocconi)

  • Ugofilippo Basellini

    (Max-Planck-Institut für Demografische Forschung)

Abstract

Background: The novel coronavirus (SARS-CoV-2) emerged as a global threat at the beginning of 2020, spreading around the globe at different times and rates. Within a country, such differences provide the opportunity for strategic allocations of health care resources. Objective: We aim to provide a tool to estimate and visualize differences in the spread of the pandemic at the subnational level. Specifically, we focus on the case of Italy, a country that has been harshly hit by the virus. Methods: We model the number of SARS-CoV-2 reported cases and deaths as well as the number of hospital admissions at the Italian subnational level with Poisson regression. We employ parametric and nonparametric functional forms for the hazard function. In the parametric approach, model selection is performed using an automatic criterion based on the statistical significance of the estimated parameters and on goodness-of-fit assessment. In the nonparametric approach, we employ out-of-sample forecasting error minimization. Results: For each province and region, fitted models are plotted against observed data, demonstrating the appropriateness of the modeling approach. Moreover, estimated counts and rates of change for each outcome variable are plotted on maps of the country. This provides a direct visual assessment of the geographic distribution of risk areas as well as insights on the evolution of the pandemic over time. Contribution: The proposed Epilocal software provides researchers and policymakers with an open-access real-time tool to monitor the most recent trends of the COVID-19 pandemic in Italian regions and provinces with informative graphical outputs. The software is freely available and can be easily modified to fit other countries as well as future pandemics.

Suggested Citation

  • Marco Bonetti & Ugofilippo Basellini, 2021. "Epilocal: A real-time tool for local epidemic monitoring," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 44(12), pages 307-332.
  • Handle: RePEc:dem:demres:v:44:y:2021:i:12
    DOI: 10.4054/DemRes.2021.44.12
    as

    Download full text from publisher

    File URL: https://www.demographic-research.org/volumes/vol44/12/44-12.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.4054/DemRes.2021.44.12?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marco Bonetti & Ugofilippo Basellini, 2020. "Epilocal: a real-time tool for local epidemic monitoring," Working Papers axhbndayuclqnee2wf7y, French Institute for Demographic Studies.
    2. Marcus Ebeling, 2018. "How Has the Lower Boundary of Human Mortality Evolved, and Has It Already Stopped Decreasing?," Demography, Springer;Population Association of America (PAA), vol. 55(5), pages 1887-1903, October.
    3. Nadine Ouellette & Robert Bourbeau, 2011. "Changes in the age-at-death distribution in four low mortality countries: A nonparametric approach," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 25(19), pages 595-628.
    4. Monica Chiogna and Carlo Gaetan & Carlo Gaetan, 2002. "Dynamic generalized linear models with application to environmental epidemiology," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 51(4), pages 453-468, October.
    5. Ugofilippo Basellini & Carlo Giovanni Camarda, 2019. "Modelling and forecasting adult age-at-death distributions," Population Studies, Taylor & Francis Journals, vol. 73(1), pages 119-138, January.
    6. Carlo Giovanni Camarda, 2019. "Smooth constrained mortality forecasting," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 41(38), pages 1091-1130.
    7. Arne Henningsen & Ott Toomet, 2011. "maxLik: A package for maximum likelihood estimation in R," Computational Statistics, Springer, vol. 26(3), pages 443-458, September.
    8. Camarda, Carlo G., 2012. "MortalitySmooth: An R Package for Smoothing Poisson Counts with P-Splines," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 50(i01).
    9. A. Agosto & Alexandra Campmas & P. Giudici & A. Renda, 2021. "Monitoring COVID-19 contagion growth," Post-Print hal-03407115, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ugofilippo Basellini & Søren Kjærgaard & Carlo Giovanni Camarda, 2020. "An age-at-death distribution approach to forecast cohort mortality," Working Papers axafx5_3agsuwaphvlfk, French Institute for Demographic Studies.
    2. Ugofilippo Basellini & Carlo Giovanni Camarda, 2020. "Modelling COVID-19 mortality at the regional level in Italy," Working Papers axq0sudakgkzhr-blecv, French Institute for Demographic Studies.
    3. Basellini, Ugofilippo & Kjærgaard, Søren & Camarda, Carlo Giovanni, 2020. "An age-at-death distribution approach to forecast cohort mortality," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 129-143.
    4. Paola Vazquez-Castillo & Marie-Pier Bergeron-Boucher & Trifon Missov, 2024. "Longevity à la mode: A discretized derivative tests method for accurate estimation of the adult modal age at death," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 50(11), pages 325-346.
    5. Carlo G. Camarda & Ugofilippo Basellini, 2021. "Smoothing, Decomposing and Forecasting Mortality Rates," European Journal of Population, Springer;European Association for Population Studies, vol. 37(3), pages 569-602, July.
    6. Rizzi, Silvia & Kjærgaard, Søren & Bergeron Boucher, Marie-Pier & Camarda, Carlo Giovanni & Lindahl-Jacobsen, Rune & Vaupel, James W., 2021. "Killing off cohorts: Forecasting mortality of non-extinct cohorts with the penalized composite link model," International Journal of Forecasting, Elsevier, vol. 37(1), pages 95-104.
    7. Ahbab Mohammad Fazle Rabbi & Stefano Mazzuco, 2021. "Mortality Forecasting with the Lee–Carter Method: Adjusting for Smoothing and Lifespan Disparity," European Journal of Population, Springer;European Association for Population Studies, vol. 37(1), pages 97-120, March.
    8. Lucia Zanotto & Vladimir Canudas-Romo & Stefano Mazzuco, 2021. "A Mixture-Function Mortality Model: Illustration of the Evolution of Premature Mortality," European Journal of Population, Springer;European Association for Population Studies, vol. 37(1), pages 1-27, March.
    9. van Raalte, Alyson A & Basellini, Ugofilippo & Camarda, Carlo Giovanni & Nepomuceno, Marília & Myrskylä, Mikko, 2022. "The dangers of drawing cohort profiles from period data: a research note," SocArXiv frkcw, Center for Open Science.
    10. Ricarda Duerst & Jonas Schöley & Christina Bohk-Ewald, 2023. "A validation workflow for mortality forecasting," MPIDR Working Papers WP-2023-020, Max Planck Institute for Demographic Research, Rostock, Germany.
    11. Alyson van Raalte & Ugofilippo Basellini & Carlo Giovanni Camarda & Marília R. Nepomuceno & Mikko Myrskylä, 2022. "The dangers of drawing cohort profiles from period data: a research note," Working Papers ayadh-ohbnm4x3q6cor1, French Institute for Demographic Studies.
    12. Carlo Giovanni Camarda, 2019. "Smooth constrained mortality forecasting," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 41(38), pages 1091-1130.
    13. Viorela Diaconu & Nadine Ouellette & Robert Bourbeau, 2020. "Modal lifespan and disparity at older ages by leading causes of death: a Canada-U.S. comparison," Journal of Population Research, Springer, vol. 37(4), pages 323-344, December.
    14. Ainhoa-Elena Léger & Stefano Mazzuco, 2021. "What Can We Learn from the Functional Clustering of Mortality Data? An Application to the Human Mortality Database," European Journal of Population, Springer;European Association for Population Studies, vol. 37(4), pages 769-798, November.
    15. Viorela Diaconu & Nadine Ouellette & Carlo Giovanni Camarda & Robert Bourbeau, 2016. "Insight on 'typical' longevity: An analysis of the modal lifespan by leading causes of death in Canada," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 35(17), pages 471-504.
    16. Marco Bonetti & Ugofilippo Basellini, 2020. "Epilocal: a real-time tool for local epidemic monitoring," Working Papers axhbndayuclqnee2wf7y, French Institute for Demographic Studies.
    17. Maness, Michael & Cirillo, Cinzia, 2016. "An indirect latent informational conformity social influence choice model: Formulation and case study," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 75-101.
    18. John-Fritz Thony & Jean Vaillant, 2022. "Parameter Estimation for a Fractional Black–Scholes Model with Jumps from Discrete Time Observations," Mathematics, MDPI, vol. 10(22), pages 1-17, November.
    19. Wang, Shengjie & Kang, Yanfei & Petropoulos, Fotios, 2024. "Combining probabilistic forecasts of intermittent demand," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1038-1048.
    20. José M. Aburto & Alyson A. van Raalte, 2017. "Lifespan dispersion in times of life expectancy fluctuation: the case of Central and Eastern Europe," MPIDR Working Papers WP-2017-018, Max Planck Institute for Demographic Research, Rostock, Germany.

    More about this item

    Keywords

    COVID-19; modelling; Poisson regression; pandemic;
    All these keywords.

    JEL classification:

    • J1 - Labor and Demographic Economics - - Demographic Economics
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dem:demres:v:44:y:2021:i:12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Editorial Office (email available below). General contact details of provider: https://www.demogr.mpg.de/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.