IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v51y2002i4p453-468.html
   My bibliography  Save this article

Dynamic generalized linear models with application to environmental epidemiology

Author

Listed:
  • Monica Chiogna and Carlo Gaetan
  • Carlo Gaetan

Abstract

Summary. We propose modelling short‐term pollutant exposure effects on health by using dynamic generalized linear models. The time series of count data are modelled by a Poisson distribution having mean driven by a latent Markov process; estimation is performed by the extended Kalman filter and smoother. This modelling strategy allows us to take into account possible overdispersion and time‐varying effects of the covariates. These ideas are illustrated by reanalysing data on the relationship between daily non‐accidental deaths and air pollution in the city of Birmingham, Alabama.

Suggested Citation

  • Monica Chiogna and Carlo Gaetan & Carlo Gaetan, 2002. "Dynamic generalized linear models with application to environmental epidemiology," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 51(4), pages 453-468, October.
  • Handle: RePEc:bla:jorssc:v:51:y:2002:i:4:p:453-468
    DOI: 10.1111/1467-9876.00280
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9876.00280
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9876.00280?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kostas Triantafyllopoulos, 2009. "Inference of Dynamic Generalized Linear Models: On‐Line Computation and Appraisal," International Statistical Review, International Statistical Institute, vol. 77(3), pages 430-450, December.
    2. Dani Gamerman & Thiago Rezende Santos & Glaura C. Franco, 2013. "A Non-Gaussian Family Of State-Space Models With Exact Marginal Likelihood," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(6), pages 625-645, November.
    3. Marco Bonetti & Ugofilippo Basellini, 2021. "Epilocal: A real-time tool for local epidemic monitoring," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 44(12), pages 307-332.
    4. Marco Bonetti & Ugofilippo Basellini, 2020. "Epilocal: a real-time tool for local epidemic monitoring," Working Papers axhbndayuclqnee2wf7y, French Institute for Demographic Studies.
    5. Daniel Adyro Martínez-Bello & Antonio López-Quílez & Alexander Torres-Prieto, 2017. "Bayesian dynamic modeling of time series of dengue disease case counts," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 11(7), pages 1-19, July.
    6. Chiranjit Dutta & Nalini Ravishanker & Sumanta Basu, 2022. "Modeling Multivariate Positive-Valued Time Series Using R-INLA," Papers 2206.05374, arXiv.org, revised Jul 2022.
    7. Duncan Lee & Gavin Shaddick, 2007. "Time-Varying Coefficient Models for the Analysis of Air Pollution and Health Outcome Data," Biometrics, The International Biometric Society, vol. 63(4), pages 1253-1261, December.
    8. Vurukonda Sathish & Siuli Mukhopadhyay & Rashmi Tiwari, 2022. "Autoregressive and moving average models for zero‐inflated count time series," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 76(2), pages 190-218, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:51:y:2002:i:4:p:453-468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.