IDEAS home Printed from https://ideas.repec.org/a/plo/pntd00/0004992.html
   My bibliography  Save this article

Meta-transcriptome Profiling of the Human-Leishmania braziliensis Cutaneous Lesion

Author

Listed:
  • Stephen M Christensen
  • Laura A L Dillon
  • Lucas P Carvalho
  • Sara Passos
  • Fernanda O Novais
  • V Keith Hughitt
  • Daniel P Beiting
  • Edgar M Carvalho
  • Phillip Scott
  • Najib M El-Sayed
  • David M Mosser

Abstract

Host and parasite gene expression in skin biopsies from Leishmania braziliensis-infected patients were simultaneously analyzed using high throughput RNA-sequencing. Biopsies were taken from 8 patients with early cutaneous leishmaniasis and 17 patients with late cutaneous leishmaniasis. Although parasite DNA was found in all patient lesions at the time of biopsy, the patients could be stratified into two groups: one lacking detectable parasite transcripts (PTNeg) in lesions, and another in which parasite transcripts were readily detected (PTPos). These groups exhibited substantial differences in host responses to infection. PTPos biopsies contained an unexpected increase in B lymphocyte-specific and immunoglobulin transcripts in the lesions, and an upregulation of immune inhibitory molecules. Biopsies without detectable parasite transcripts showed decreased evidence for B cell activation, but increased expression of antimicrobial genes and genes encoding skin barrier functions. The composition and abundance of L. braziliensis transcripts in PTPos lesions were surprisingly conserved among all six patients, with minimal meaningful differences between lesions from patients with early and late cutaneous leishmaniasis. The most abundant parasite transcripts expressed in lesions were distinct from transcripts expressed in vitro in human macrophage cultures infected with L. amazonensis or L. major. Therefore in vitro gene expression in macrophage monolayers may not be a strong predictor of gene expression in lesions. Some of the most highly expressed in vivo transcripts encoded amastin-like proteins, hypothetical genes, putative parasite virulence factors, as well as histones and tubulin. In summary, RNA sequencing allowed us to simultaneously analyze human and L. braziliensis transcriptomes in lesions of infected patients, and identify unexpected differences in host immune responses which correlated with active transcription of parasite genes.Author Summary: Leishmania spp are intracellular protozoan parasites that replicate primarily within host tissue macrophages. In this paper we simultaneously query host and parasite gene expression in human cutaneous L. braziliensis lesions. We observe an unexpectedly prominent role for B cells and immunoglobulins in lesions in which actively transcribing parasites reside. We also observe that parasite gene expression is surprisingly conserved among L. braziliensis lesions, and the genes that are expressed in lesions are not those that have been previously associated with parasite growth in vitro. This analysis of parasite and host gene expression in lesions may lead to the identification of new parasite virulence factors and may identify host responses that promote parasite persistence in lesions.

Suggested Citation

  • Stephen M Christensen & Laura A L Dillon & Lucas P Carvalho & Sara Passos & Fernanda O Novais & V Keith Hughitt & Daniel P Beiting & Edgar M Carvalho & Phillip Scott & Najib M El-Sayed & David M Mosse, 2016. "Meta-transcriptome Profiling of the Human-Leishmania braziliensis Cutaneous Lesion," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 10(9), pages 1-17, September.
  • Handle: RePEc:plo:pntd00:0004992
    DOI: 10.1371/journal.pntd.0004992
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0004992
    Download Restriction: no

    File URL: https://journals.plos.org/plosntds/article/file?id=10.1371/journal.pntd.0004992&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pntd.0004992?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Smyth Gordon K, 2004. "Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 3(1), pages 1-28, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aaron C Ericsson & J Wade Davis & William Spollen & Nathan Bivens & Scott Givan & Catherine E Hagan & Mark McIntosh & Craig L Franklin, 2015. "Effects of Vendor and Genetic Background on the Composition of the Fecal Microbiota of Inbred Mice," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-19, February.
    2. Hossain, Ahmed & Beyene, Joseph & Willan, Andrew R. & Hu, Pingzhao, 2009. "A flexible approximate likelihood ratio test for detecting differential expression in microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3685-3695, August.
    3. Xiaohong Li & Guy N Brock & Eric C Rouchka & Nigel G F Cooper & Dongfeng Wu & Timothy E O’Toole & Ryan S Gill & Abdallah M Eteleeb & Liz O’Brien & Shesh N Rai, 2017. "A comparison of per sample global scaling and per gene normalization methods for differential expression analysis of RNA-seq data," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-22, May.
    4. Kerr Kathleen F., 2012. "Optimality Criteria for the Design of 2-Color Microarray Studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(1), pages 1-9, January.
    5. Ambroise Jérôme & Bearzatto Bertrand & Robert Annie & Macq Benoit & Gala Jean-Luc, 2012. "Combining Multiple Laser Scans of Spotted Microarrays by Means of a Two-Way ANOVA Model," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(3), pages 1-20, February.
    6. J. McClatchy & R. Strogantsev & E. Wolfe & H. Y. Lin & M. Mohammadhosseini & B. A. Davis & C. Eden & D. Goldman & W. H. Fleming & P. Conley & G. Wu & L. Cimmino & H. Mohammed & A. Agarwal, 2023. "Clonal hematopoiesis related TET2 loss-of-function impedes IL1β-mediated epigenetic reprogramming in hematopoietic stem and progenitor cells," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Alexandra Gyurdieva & Stefan Zajic & Ya-Fang Chang & E. Andres Houseman & Shan Zhong & Jaegil Kim & Michael Nathenson & Thomas Faitg & Mary Woessner & David C. Turner & Aisha N. Hasan & John Glod & Ro, 2022. "Biomarker correlates with response to NY-ESO-1 TCR T cells in patients with synovial sarcoma," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    8. Sora Yoon & Seon-Young Kim & Dougu Nam, 2016. "Improving Gene-Set Enrichment Analysis of RNA-Seq Data with Small Replicates," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-16, November.
    9. Yu Lianbo & Gulati Parul & Fernandez Soledad & Pennell Michael & Kirschner Lawrence & Jarjoura David, 2011. "Fully Moderated T-statistic for Small Sample Size Gene Expression Arrays," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-22, September.
    10. Sinan Xiong & Jianbiao Zhou & Tze King Tan & Tae-Hoon Chung & Tuan Zea Tan & Sabrina Hui-Min Toh & Nicole Xin Ning Tang & Yunlu Jia & Yi Xiang See & Melissa Jane Fullwood & Takaomi Sanda & Wee-Joo Chn, 2024. "Super enhancer acquisition drives expression of oncogenic PPP1R15B that regulates protein homeostasis in multiple myeloma," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    11. Chaofeng Yuan & Wensheng Zhu & Xuming He & Jianhua Guo, 2019. "A mixture factor model with applications to microarray data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 60-76, March.
    12. Nan Li & Matthew N. McCall & Zhijin Wu, 2017. "Establishing Informative Prior for Gene Expression Variance from Public Databases," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(1), pages 160-177, June.
    13. Brian Caffo & Liu Dongmei & Giovanni Parmigiani, 2004. "Power Conjugate Multilevel Models with Applications to Genomics," Johns Hopkins University Dept. of Biostatistics Working Paper Series 1062, Berkeley Electronic Press.
    14. Nott, David J. & Yu, Zeming & Chan, Eva & Cotsapas, Chris & Cowley, Mark J. & Pulvers, Jeremy & Williams, Rohan & Little, Peter, 2007. "Hierarchical Bayes variable selection and microarray experiments," Journal of Multivariate Analysis, Elsevier, vol. 98(4), pages 852-872, April.
    15. Santu Ghosh & Alan M. Polansky, 2022. "Large-Scale Simultaneous Testing Using Kernel Density Estimation," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 808-843, August.
    16. Qianxing Mo & Faming Liang, 2010. "Bayesian Modeling of ChIP-chip Data Through a High-Order Ising Model," Biometrics, The International Biometric Society, vol. 66(4), pages 1284-1294, December.
    17. Ahmed Hossain & Hafiz T.A. Khan, 2016. "Identification of genomic markers correlated with sensitivity in solid tumors to Dasatinib using sparse principal components," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(14), pages 2538-2549, October.
    18. Alexander Kaever & Manuel Landesfeind & Kirstin Feussner & Burkhard Morgenstern & Ivo Feussner & Peter Meinicke, 2014. "Meta-Analysis of Pathway Enrichment: Combining Independent and Dependent Omics Data Sets," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-12, February.
    19. Iqbal Mahmud & Guimei Tian & Jia Wang & Tarun E. Hutchinson & Brandon J. Kim & Nikee Awasthee & Seth Hale & Chengcheng Meng & Allison Moore & Liming Zhao & Jessica E. Lewis & Aaron Waddell & Shangtao , 2023. "DAXX drives de novo lipogenesis and contributes to tumorigenesis," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    20. Nyangoma Stephen O. & Collins Stuart I. & Altman Douglas G. & Johnson Philip & Billingham Lucinda J., 2012. "Sample Size Calculations for Designing Clinical Proteomic Profiling Studies Using Mass Spectrometry," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(3), pages 1-42, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pntd00:0004992. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosntds (email available below). General contact details of provider: https://journals.plos.org/plosntds/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.