IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1009060.html
   My bibliography  Save this article

Integrating comprehensive functional annotations to boost power and accuracy in gene-based association analysis

Author

Listed:
  • Corbin Quick
  • Xiaoquan Wen
  • Gonçalo Abecasis
  • Michael Boehnke
  • Hyun Min Kang

Abstract

Gene-based association tests aggregate genotypes across multiple variants for each gene, providing an interpretable gene-level analysis framework for genome-wide association studies (GWAS). Early gene-based test applications often focused on rare coding variants; a more recent wave of gene-based methods, e.g. TWAS, use eQTLs to interrogate regulatory associations. Regulatory variants are expected to be particularly valuable for gene-based analysis, since most GWAS associations to date are non-coding. However, identifying causal genes from regulatory associations remains challenging and contentious. Here, we present a statistical framework and computational tool to integrate heterogeneous annotations with GWAS summary statistics for gene-based analysis, applied with comprehensive coding and tissue-specific regulatory annotations. We compare power and accuracy identifying causal genes across single-annotation, omnibus, and annotation-agnostic gene-based tests in simulation studies and an analysis of 128 traits from the UK Biobank, and find that incorporating heterogeneous annotations in gene-based association analysis increases power and performance identifying causal genes.Author summary: Gene-based association tests are statistical methods used in genome-wide association studies (GWAS) to identify genes that affect heritable traits. Gene-based tests are formed by aggregating genotypes across multiple genetic variants for each gene, often including only variants that are likely to affect gene function or regulation. In this work, we present a unified framework to integrate heterogeneous classes of functional variants in gene-based association analysis. This approach enables us to simultaneously assess multiple distinct biological mechanisms underlying GWAS association signals, and to construct powerful omnibus tests by aggregating across functional classes for each gene. We evaluated the performance of gene-based association test methods and strategies to identify causal genes by conducting extensive simulation studies, and by analyzing 128 human traits from the UK Biobank and comparing our results against lists of high-confidence putative causal genes. Our analysis suggests that incorporating heterogeneous functional variants in gene-based association tests increases power to detect gene-based association and helps identify causal genes.

Suggested Citation

  • Corbin Quick & Xiaoquan Wen & Gonçalo Abecasis & Michael Boehnke & Hyun Min Kang, 2020. "Integrating comprehensive functional annotations to boost power and accuracy in gene-based association analysis," PLOS Genetics, Public Library of Science, vol. 16(12), pages 1-23, December.
  • Handle: RePEc:plo:pgen00:1009060
    DOI: 10.1371/journal.pgen.1009060
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1009060
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1009060&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1009060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alvaro N. Barbeira & Scott P. Dickinson & Rodrigo Bonazzola & Jiamao Zheng & Heather E. Wheeler & Jason M. Torres & Eric S. Torstenson & Kaanan P. Shah & Tzintzuni Garcia & Todd L. Edwards & Eli A. St, 2018. "Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics," Nature Communications, Nature, vol. 9(1), pages 1-20, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael G. Levin & Noah L. Tsao & Pankhuri Singhal & Chang Liu & Ha My T. Vy & Ishan Paranjpe & Joshua D. Backman & Tiffany R. Bellomo & William P. Bone & Kiran J. Biddinger & Qin Hui & Ozan Dikilitas, 2022. "Genome-wide association and multi-trait analyses characterize the common genetic architecture of heart failure," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Angela Andaleon & Lauren S Mogil & Heather E Wheeler, 2019. "Genetically regulated gene expression underlies lipid traits in Hispanic cohorts," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-21, August.
    3. Xena Marie Mapel & Naveen Kumar Kadri & Alexander S. Leonard & Qiongyu He & Audald Lloret-Villas & Meenu Bhati & Maya Hiltpold & Hubert Pausch, 2024. "Molecular quantitative trait loci in reproductive tissues impact male fertility in cattle," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. William J. Young & Jeffrey Haessler & Jan-Walter Benjamins & Linda Repetto & Jie Yao & Aaron Isaacs & Andrew R. Harper & Julia Ramirez & Sophie Garnier & Stefan Duijvenboden & Antoine R. Baldassari & , 2023. "Genetic architecture of spatial electrical biomarkers for cardiac arrhythmia and relationship with cardiovascular disease," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Han Zhang & Lu Deng & William Wheeler & Jing Qin & Kai Yu, 2022. "Integrative analysis of multiple case‐control studies," Biometrics, The International Biometric Society, vol. 78(3), pages 1080-1091, September.
    6. Yaohua Yang & Yaxin Chen & Shuai Xu & Xingyi Guo & Guochong Jia & Jie Ping & Xiang Shu & Tianying Zhao & Fangcheng Yuan & Gang Wang & Yufang Xie & Hang Ci & Hongmo Liu & Yawen Qi & Yongjun Liu & Dan L, 2024. "Integrating muti-omics data to identify tissue-specific DNA methylation biomarkers for cancer risk," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Xinyuan Dong & Yu-Ru Su & Richard Barfield & Stephanie A Bien & Qianchuan He & Tabitha A Harrison & Jeroen R Huyghe & Temitope O Keku & Noralane M Lindor & Clemens Schafmayer & Andrew T Chan & Stephen, 2020. "A general framework for functionally informed set-based analysis: Application to a large-scale colorectal cancer study," PLOS Genetics, Public Library of Science, vol. 16(8), pages 1-21, August.
    8. Benjamin J. Schmiedel & Job Rocha & Cristian Gonzalez-Colin & Sourya Bhattacharyya & Ariel Madrigal & Christian H. Ottensmeier & Ferhat Ay & Vivek Chandra & Pandurangan Vijayanand, 2021. "COVID-19 genetic risk variants are associated with expression of multiple genes in diverse immune cell types," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    9. Xiaoguang Xu & Chachrit Khunsriraksakul & James M. Eales & Sebastien Rubin & David Scannali & Sushant Saluja & David Talavera & Havell Markus & Lida Wang & Maciej Drzal & Akhlaq Maan & Abigail C. Lay , 2024. "Genetic imputation of kidney transcriptome, proteome and multi-omics illuminates new blood pressure and hypertension targets," Nature Communications, Nature, vol. 15(1), pages 1-29, December.
    10. Yanyu Xiao & Jingjing Wang & Jiaqi Li & Peijing Zhang & Jingyu Li & Yincong Zhou & Qing Zhou & Ming Chen & Xin Sheng & Zhihong Liu & Xiaoping Han & Guoji Guo, 2023. "An analytical framework for decoding cell type-specific genetic variation of gene regulation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Max Lam & Chia-Yen Chen & W. David Hill & Charley Xia & Ruoyu Tian & Daniel F. Levey & Joel Gelernter & Murray B. Stein & Alexander S. Hatoum & Hailiang Huang & Anil K. Malhotra & Heiko Runz & Tian Ge, 2022. "Collective genomic segments with differential pleiotropic patterns between cognitive dimensions and psychopathology," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    12. Sébastien Thériault & Zhonglin Li & Erik Abner & Jian’an Luan & Hasanga D. Manikpurage & Ursula Houessou & Pardis Zamani & Mewen Briend & Dominique K. Boudreau & Nathalie Gaudreault & Lily Frenette & , 2024. "Integrative genomic analyses identify candidate causal genes for calcific aortic valve stenosis involving tissue-specific regulation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. Kevin L Keys & Angel C Y Mak & Marquitta J White & Walter L Eckalbar & Andrew W Dahl & Joel Mefford & Anna V Mikhaylova & María G Contreras & Jennifer R Elhawary & Celeste Eng & Donglei Hu & Scott Hun, 2020. "On the cross-population generalizability of gene expression prediction models," PLOS Genetics, Public Library of Science, vol. 16(8), pages 1-28, August.
    14. Bingxin Zhao & Fei Zou & Hongtu Zhu, 2023. "Cross‐trait prediction accuracy of summary statistics in genome‐wide association studies," Biometrics, The International Biometric Society, vol. 79(2), pages 841-853, June.
    15. Xiaoyu Song & Jiayi Ji & Joseph H. Rothstein & Stacey E. Alexeeff & Lori C. Sakoda & Adriana Sistig & Ninah Achacoso & Eric Jorgenson & Alice S. Whittemore & Robert J. Klein & Laurel A. Habel & Pei Wa, 2023. "MiXcan: a framework for cell-type-aware transcriptome-wide association studies with an application to breast cancer," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1009060. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.