IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-55392-7.html
   My bibliography  Save this article

Quantifying the regulatory potential of genetic variants via a hybrid sequence-oriented model with SVEN

Author

Listed:
  • Yu Wang

    (Peking University
    Changping Laboratory)

  • Nan Liang

    (Peking University)

  • Ge Gao

    (Peking University
    Changping Laboratory)

Abstract

Deciphering how noncoding DNA determines gene expression is critical for decoding the functional genome. Understanding the transcription effects of noncoding genetic variants are still major unsolved problems, which is critical for downstream applications in human genetics and precision medicine. Here, we integrate regulatory-specific neural networks and tissue-specific gradient-boosting trees to build SVEN: a hybrid sequence-oriented architecture that can accurately predict tissue-specific gene expression level and quantify the tissue-specific transcriptomic impacts of structural variants across more than 350 tissues and cell lines. We further systematically screen a large-scale structural variants dataset derived from 3622 individuals and clinical structural variants from ClinVar, and provide an overview of transcriptomic impacts of structural variants in population. As a sequence-oriented model, SVEN is also able to predict regulatory effects for small noncoding variants. We expect that SVEN will enable more effective in silico analysis and interpretation of human genome-wide disease-related genetic variants.

Suggested Citation

  • Yu Wang & Nan Liang & Ge Gao, 2024. "Quantifying the regulatory potential of genetic variants via a hybrid sequence-oriented model with SVEN," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-55392-7
    DOI: 10.1038/s41467-024-55392-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55392-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55392-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-55392-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.