IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-35888-4.html
   My bibliography  Save this article

MiXcan: a framework for cell-type-aware transcriptome-wide association studies with an application to breast cancer

Author

Listed:
  • Xiaoyu Song

    (Icahn School of Medicine at Mount Sinai
    Icahn School of Medicine at Mount Sinai)

  • Jiayi Ji

    (Icahn School of Medicine at Mount Sinai
    Icahn School of Medicine at Mount Sinai)

  • Joseph H. Rothstein

    (Icahn School of Medicine at Mount Sinai
    Icahn School of Medicine at Mount Sinai)

  • Stacey E. Alexeeff

    (Kaiser Permanente Northern California)

  • Lori C. Sakoda

    (Kaiser Permanente Northern California)

  • Adriana Sistig

    (Icahn School of Medicine at Mount Sinai)

  • Ninah Achacoso

    (Kaiser Permanente Northern California)

  • Eric Jorgenson

    (Kaiser Permanente Northern California
    Regeneron Genetics Center)

  • Alice S. Whittemore

    (Stanford University School of Medicine
    Stanford University School of Medicine)

  • Robert J. Klein

    (Icahn School of Medicine at Mount Sinai
    Icahn School of Medicine at Mount Sinai)

  • Laurel A. Habel

    (Kaiser Permanente Northern California)

  • Pei Wang

    (Icahn School of Medicine at Mount Sinai
    Icahn School of Medicine at Mount Sinai)

  • Weiva Sieh

    (Icahn School of Medicine at Mount Sinai
    Icahn School of Medicine at Mount Sinai
    Icahn School of Medicine at Mount Sinai)

Abstract

Human bulk tissue samples comprise multiple cell types with diverse roles in disease etiology. Conventional transcriptome-wide association study approaches predict genetically regulated gene expression at the tissue level, without considering cell-type heterogeneity, and test associations of predicted tissue-level expression with disease. Here we develop MiXcan, a cell-type-aware transcriptome-wide association study approach that predicts cell-type-level expression, identifies disease-associated genes via combination of cell-type-level association signals for multiple cell types, and provides insight into the disease-critical cell type. As a proof of concept, we conducted cell-type-aware analyses of breast cancer in 58,648 women and identified 12 transcriptome-wide significant genes using MiXcan compared with only eight genes using conventional approaches. Importantly, MiXcan identified genes with distinct associations in mammary epithelial versus stromal cells, including three new breast cancer susceptibility genes. These findings demonstrate that cell-type-aware transcriptome-wide analyses can reveal new insights into the genetic and cellular etiology of breast cancer and other diseases.

Suggested Citation

  • Xiaoyu Song & Jiayi Ji & Joseph H. Rothstein & Stacey E. Alexeeff & Lori C. Sakoda & Adriana Sistig & Ninah Achacoso & Eric Jorgenson & Alice S. Whittemore & Robert J. Klein & Laurel A. Habel & Pei Wa, 2023. "MiXcan: a framework for cell-type-aware transcriptome-wide association studies with an application to breast cancer," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-35888-4
    DOI: 10.1038/s41467-023-35888-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-35888-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-35888-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alvaro N. Barbeira & Scott P. Dickinson & Rodrigo Bonazzola & Jiamao Zheng & Heather E. Wheeler & Jason M. Torres & Eric S. Torstenson & Kaanan P. Shah & Tzintzuni Garcia & Todd L. Edwards & Eli A. St, 2018. "Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics," Nature Communications, Nature, vol. 9(1), pages 1-20, December.
    2. Yaowu Liu & Jun Xie, 2020. "Cauchy Combination Test: A Powerful Test With Analytic p-Value Calculation Under Arbitrary Dependency Structures," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 393-402, January.
    3. Margaret K. R. Donovan & Agnieszka D’Antonio-Chronowska & Matteo D’Antonio & Kelly A. Frazer, 2020. "Author Correction: Cellular deconvolution of GTEx tissues powers discovery of disease and cell-type associated regulatory variants," Nature Communications, Nature, vol. 11(1), pages 1-1, December.
    4. Kyriaki Michailidou & Sara Lindström & Joe Dennis & Jonathan Beesley & Shirley Hui & Siddhartha Kar & Audrey Lemaçon & Penny Soucy & Dylan Glubb & Asha Rostamianfar & Manjeet K. Bolla & Qin Wang & Jon, 2017. "Association analysis identifies 65 new breast cancer risk loci," Nature, Nature, vol. 551(7678), pages 92-94, November.
    5. Kosuke Yoshihara & Maria Shahmoradgoli & Emmanuel Martínez & Rahulsimham Vegesna & Hoon Kim & Wandaliz Torres-Garcia & Victor Treviño & Hui Shen & Peter W. Laird & Douglas A. Levine & Scott L. Carter , 2013. "Inferring tumour purity and stromal and immune cell admixture from expression data," Nature Communications, Nature, vol. 4(1), pages 1-11, December.
    6. Mike Thompson & Mary Grace Gordon & Andrew Lu & Anchit Tandon & Eran Halperin & Alexander Gusev & Chun Jimmie Ye & Brunilda Balliu & Noah Zaitlen, 2022. "Multi-context genetic modeling of transcriptional regulation resolves novel disease loci," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Helian Feng & Nicholas Mancuso & Alexander Gusev & Arunabha Majumdar & Megan Major & Bogdan Pasaniuc & Peter Kraft, 2021. "Leveraging expression from multiple tissues using sparse canonical correlation analysis and aggregate tests improves the power of transcriptome-wide association studies," PLOS Genetics, Public Library of Science, vol. 17(4), pages 1-21, April.
    8. Margaret K. R. Donovan & Agnieszka D’Antonio-Chronowska & Matteo D’Antonio & Kelly A. Frazer, 2020. "Cellular deconvolution of GTEx tissues powers discovery of disease and cell-type associated regulatory variants," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    9. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    10. Gavin J. Sutton & Daniel Poppe & Rebecca K. Simmons & Kieran Walsh & Urwah Nawaz & Ryan Lister & Johann A. Gagnon-Bartsch & Irina Voineagu, 2022. "Comprehensive evaluation of deconvolution methods for human brain gene expression," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    11. Daphne Tsoucas & Rui Dong & Haide Chen & Qian Zhu & Guoji Guo & Guo-Cheng Yuan, 2019. "Accurate estimation of cell-type composition from gene expression data," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    12. Francisco Avila Cobos & José Alquicira-Hernandez & Joseph E. Powell & Pieter Mestdagh & Katleen Preter, 2020. "Author Correction: Benchmarking of cell type deconvolution pipelines for transcriptomics data," Nature Communications, Nature, vol. 11(1), pages 1-1, December.
    13. Weiva Sieh & Joseph H. Rothstein & Robert J. Klein & Stacey E. Alexeeff & Lori C. Sakoda & Eric Jorgenson & Russell B. McBride & Rebecca E. Graff & Valerie McGuire & Ninah Achacoso & Luana Acton & Rhe, 2020. "Identification of 31 loci for mammographic density phenotypes and their associations with breast cancer risk," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    14. Xiaoping Han & Ziming Zhou & Lijiang Fei & Huiyu Sun & Renying Wang & Yao Chen & Haide Chen & Jingjing Wang & Huanna Tang & Wenhao Ge & Yincong Zhou & Fang Ye & Mengmeng Jiang & Junqing Wu & Yanyu Xia, 2020. "Construction of a human cell landscape at single-cell level," Nature, Nature, vol. 581(7808), pages 303-309, May.
    15. Francisco Avila Cobos & José Alquicira-Hernandez & Joseph E. Powell & Pieter Mestdagh & Katleen De Preter, 2020. "Benchmarking of cell type deconvolution pipelines for transcriptomics data," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    16. Xuran Wang & Jihwan Park & Katalin Susztak & Nancy R. Zhang & Mingyao Li, 2019. "Bulk tissue cell type deconvolution with multi-subject single-cell expression reference," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khoa A. Tran & Venkateswar Addala & Rebecca L. Johnston & David Lovell & Andrew Bradley & Lambros T. Koufariotis & Scott Wood & Sunny Z. Wu & Daniel Roden & Ghamdan Al-Eryani & Alexander Swarbrick & E, 2023. "Performance of tumour microenvironment deconvolution methods in breast cancer using single-cell simulated bulk mixtures," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Gavin J. Sutton & Daniel Poppe & Rebecca K. Simmons & Kieran Walsh & Urwah Nawaz & Ryan Lister & Johann A. Gagnon-Bartsch & Irina Voineagu, 2022. "Comprehensive evaluation of deconvolution methods for human brain gene expression," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    3. Ryo Yamamoto & Ryan Chung & Juan Manuel Vazquez & Huanjie Sheng & Philippa L. Steinberg & Nilah M. Ioannidis & Peter H. Sudmant, 2022. "Tissue-specific impacts of aging and genetics on gene expression patterns in humans," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Daniel Charytonowicz & Rachel Brody & Robert Sebra, 2023. "Interpretable and context-free deconvolution of multi-scale whole transcriptomic data with UniCell deconvolve," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    5. Kobe Ridder & Huiwen Che & Kaat Leroy & Bernard Thienpont, 2024. "Benchmarking of methods for DNA methylome deconvolution," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    6. Nelson Johansen & Hongru Hu & Gerald Quon, 2023. "Projecting RNA measurements onto single cell atlases to extract cell type-specific expression profiles using scProjection," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. Kang Wang & Ioannis Zerdes & Henrik J. Johansson & Dhifaf Sarhan & Yizhe Sun & Dimitris C. Kanellis & Emmanouil G. Sifakis & Artur Mezheyeuski & Xingrong Liu & Niklas Loman & Ingrid Hedenfalk & Jonas , 2024. "Longitudinal molecular profiling elucidates immunometabolism dynamics in breast cancer," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    8. Matteo D’Antonio & Jennifer P. Nguyen & Timothy D. Arthur & Hiroko Matsui & Agnieszka D’Antonio-Chronowska & Kelly A. Frazer, 2023. "Fine mapping spatiotemporal mechanisms of genetic variants underlying cardiac traits and disease," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    9. Zichen Zhang & Ye Eun Bae & Jonathan R. Bradley & Lang Wu & Chong Wu, 2022. "SUMMIT: An integrative approach for better transcriptomic data imputation improves causal gene identification," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Zhenzhen Xun & Xinyu Ding & Yao Zhang & Benyan Zhang & Shujing Lai & Duowu Zou & Junke Zheng & Guoqiang Chen & Bing Su & Leng Han & Youqiong Ye, 2023. "Reconstruction of the tumor spatial microenvironment along the malignant-boundary-nonmalignant axis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    11. Paul Little & Si Liu & Vasyl Zhabotynsky & Yun Li & Dan-Yu Lin & Wei Sun, 2023. "A computational method for cell type-specific expression quantitative trait loci mapping using bulk RNA-seq data," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    12. A. Gordon Robertson & Khyati Meghani & Lauren Folgosa Cooley & Kimberly A. McLaughlin & Leigh Ann Fall & Yanni Yu & Mauro A. A. Castro & Clarice S. Groeneveld & Aurélien Reyniès & Vadim I. Nazarov & V, 2023. "Expression-based subtypes define pathologic response to neoadjuvant immune-checkpoint inhibitors in muscle-invasive bladder cancer," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    13. Brian D. Lehmann & Antonio Colaprico & Tiago C. Silva & Jianjiao Chen & Hanbing An & Yuguang Ban & Hanchen Huang & Lily Wang & Jamaal L. James & Justin M. Balko & Paula I. Gonzalez-Ericsson & Melinda , 2021. "Multi-omics analysis identifies therapeutic vulnerabilities in triple-negative breast cancer subtypes," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    14. Yanshuo Chen & Yixuan Wang & Yuelong Chen & Yuqi Cheng & Yumeng Wei & Yunxiang Li & Jiuming Wang & Yingying Wei & Ting-Fung Chan & Yu Li, 2022. "Deep autoencoder for interpretable tissue-adaptive deconvolution and cell-type-specific gene analysis," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    15. Eloise Berson & Anjali Sreenivas & Thanaphong Phongpreecha & Amalia Perna & Fiorella C. Grandi & Lei Xue & Neal G. Ravindra & Neelufar Payrovnaziri & Samson Mataraso & Yeasul Kim & Camilo Espinosa & A, 2023. "Whole genome deconvolution unveils Alzheimer’s resilient epigenetic signature," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Yann Vanrobaeys & Zeru J. Peterson & Emily. N. Walsh & Snehajyoti Chatterjee & Li-Chun Lin & Lisa C. Lyons & Thomas Nickl-Jockschat & Ted Abel, 2023. "Spatial transcriptomics reveals unique gene expression changes in different brain regions after sleep deprivation," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    17. Joyce B. Kang & Aparna Nathan & Kathryn Weinand & Fan Zhang & Nghia Millard & Laurie Rumker & D. Branch Moody & Ilya Korsunsky & Soumya Raychaudhuri, 2021. "Efficient and precise single-cell reference atlas mapping with Symphony," Nature Communications, Nature, vol. 12(1), pages 1-21, December.
    18. Xiaoguang Xu & Chachrit Khunsriraksakul & James M. Eales & Sebastien Rubin & David Scannali & Sushant Saluja & David Talavera & Havell Markus & Lida Wang & Maciej Drzal & Akhlaq Maan & Abigail C. Lay , 2024. "Genetic imputation of kidney transcriptome, proteome and multi-omics illuminates new blood pressure and hypertension targets," Nature Communications, Nature, vol. 15(1), pages 1-29, December.
    19. Yanyu Xiao & Jingjing Wang & Jiaqi Li & Peijing Zhang & Jingyu Li & Yincong Zhou & Qing Zhou & Ming Chen & Xin Sheng & Zhihong Liu & Xiaoping Han & Guoji Guo, 2023. "An analytical framework for decoding cell type-specific genetic variation of gene regulation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Jorge Vaquero-Garcia & Joseph K. Aicher & San Jewell & Matthew R. Gazzara & Caleb M. Radens & Anupama Jha & Scott S. Norton & Nicholas F. Lahens & Gregory R. Grant & Yoseph Barash, 2023. "RNA splicing analysis using heterogeneous and large RNA-seq datasets," Nature Communications, Nature, vol. 14(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-35888-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.