IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1003925.html
   My bibliography  Save this article

Reconstructing the Population Genetic History of the Caribbean

Author

Listed:
  • Andrés Moreno-Estrada
  • Simon Gravel
  • Fouad Zakharia
  • Jacob L McCauley
  • Jake K Byrnes
  • Christopher R Gignoux
  • Patricia A Ortiz-Tello
  • Ricardo J Martínez
  • Dale J Hedges
  • Richard W Morris
  • Celeste Eng
  • Karla Sandoval
  • Suehelay Acevedo-Acevedo
  • Paul J Norman
  • Zulay Layrisse
  • Peter Parham
  • Juan Carlos Martínez-Cruzado
  • Esteban González Burchard
  • Michael L Cuccaro
  • Eden R Martin
  • Carlos D Bustamante

Abstract

The Caribbean basin is home to some of the most complex interactions in recent history among previously diverged human populations. Here, we investigate the population genetic history of this region by characterizing patterns of genome-wide variation among 330 individuals from three of the Greater Antilles (Cuba, Puerto Rico, Hispaniola), two mainland (Honduras, Colombia), and three Native South American (Yukpa, Bari, and Warao) populations. We combine these data with a unique database of genomic variation in over 3,000 individuals from diverse European, African, and Native American populations. We use local ancestry inference and tract length distributions to test different demographic scenarios for the pre- and post-colonial history of the region. We develop a novel ancestry-specific PCA (ASPCA) method to reconstruct the sub-continental origin of Native American, European, and African haplotypes from admixed genomes. We find that the most likely source of the indigenous ancestry in Caribbean islanders is a Native South American component shared among inland Amazonian tribes, Central America, and the Yucatan peninsula, suggesting extensive gene flow across the Caribbean in pre-Columbian times. We find evidence of two pulses of African migration. The first pulse—which today is reflected by shorter, older ancestry tracts—consists of a genetic component more similar to coastal West African regions involved in early stages of the trans-Atlantic slave trade. The second pulse—reflected by longer, younger tracts—is more similar to present-day West-Central African populations, supporting historical records of later transatlantic deportation. Surprisingly, we also identify a Latino-specific European component that has significantly diverged from its parental Iberian source populations, presumably as a result of small European founder population size. We demonstrate that the ancestral components in admixed genomes can be traced back to distinct sub-continental source populations with far greater resolution than previously thought, even when limited pre-Columbian Caribbean haplotypes have survived.Author Summary: Latinos are often regarded as a single heterogeneous group, whose complex variation is not fully appreciated in several social, demographic, and biomedical contexts. By making use of genomic data, we characterize ancestral components of Caribbean populations on a sub-continental level and unveil fine-scale patterns of population structure distinguishing insular from mainland Caribbean populations as well as from other Hispanic/Latino groups. We provide genetic evidence for an inland South American origin of the Native American component in island populations and for extensive pre-Columbian gene flow across the Caribbean basin. The Caribbean-derived European component shows significant differentiation from parental Iberian populations, presumably as a result of founder effects during the colonization of the New World. Based on demographic models, we reconstruct the complex population history of the Caribbean since the onset of continental admixture. We find that insular populations are best modeled as mixtures absorbing two pulses of African migrants, coinciding with the early and maximum activity stages of the transatlantic slave trade. These two pulses appear to have originated in different regions within West Africa, imprinting two distinguishable signatures on present-day Afro-Caribbean genomes and shedding light on the genetic impact of the slave trade in the Caribbean.

Suggested Citation

  • Andrés Moreno-Estrada & Simon Gravel & Fouad Zakharia & Jacob L McCauley & Jake K Byrnes & Christopher R Gignoux & Patricia A Ortiz-Tello & Ricardo J Martínez & Dale J Hedges & Richard W Morris & Cele, 2013. "Reconstructing the Population Genetic History of the Caribbean," PLOS Genetics, Public Library of Science, vol. 9(11), pages 1-19, November.
  • Handle: RePEc:plo:pgen00:1003925
    DOI: 10.1371/journal.pgen.1003925
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1003925
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1003925&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1003925?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Carlos D. Bustamante & Francisco M. De La Vega & Esteban G. Burchard, 2011. "Genomics for the world," Nature, Nature, vol. 475(7355), pages 163-165, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Angela Andaleon & Lauren S Mogil & Heather E Wheeler, 2019. "Genetically regulated gene expression underlies lipid traits in Hispanic cohorts," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-21, August.
    2. Buzbas, Erkan Ozge & Verdu, Paul, 2018. "Inference on admixture fractions in a mechanistic model of recurrent admixture," Theoretical Population Biology, Elsevier, vol. 122(C), pages 149-157.
    3. Douglas J. Kennett & Mark Lipson & Keith M. Prufer & David Mora-Marín & Richard J. George & Nadin Rohland & Mark Robinson & Willa R. Trask & Heather H. J. Edgar & Ethan C. Hill & Erin E. Ray & Paige L, 2022. "South-to-north migration preceded the advent of intensive farming in the Maya region," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Mateus H. Gouveia & Amy R. Bentley & Thiago P. Leal & Eduardo Tarazona-Santos & Carlos D. Bustamante & Adebowale A. Adeyemo & Charles N. Rotimi & Daniel Shriner, 2023. "Unappreciated subcontinental admixture in Europeans and European Americans and implications for genetic epidemiology studies," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Julian R Homburger & Andrés Moreno-Estrada & Christopher R Gignoux & Dominic Nelson & Elena Sanchez & Patricia Ortiz-Tello & Bernardo A Pons-Estel & Eduardo Acevedo-Vasquez & Pedro Miranda & Carl D La, 2015. "Genomic Insights into the Ancestry and Demographic History of South America," PLOS Genetics, Public Library of Science, vol. 11(12), pages 1-26, December.
    6. Rozaimi Mohamad Razali & Juan Rodriguez-Flores & Mohammadmersad Ghorbani & Haroon Naeem & Waleed Aamer & Elbay Aliyev & Ali Jubran & Andrew G. Clark & Khalid A. Fakhro & Younes Mokrab, 2021. "Thousands of Qatari genomes inform human migration history and improve imputation of Arab haplotypes," Nature Communications, Nature, vol. 12(1), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nadine R. Caron & Wilf Adam & Kate Anderson & Brooke T. Boswell & Meck Chongo & Viktor Deineko & Alexanne Dick & Shannon E. Hall & Jessica T. Hatcher & Patricia Howard & Megan Hunt & Kevin Linn & Ashl, 2023. "Partnering with First Nations in Northern British Columbia Canada to Reduce Inequity in Access to Genomic Research," IJERPH, MDPI, vol. 20(10), pages 1-31, May.
    2. Julian R Homburger & Andrés Moreno-Estrada & Christopher R Gignoux & Dominic Nelson & Elena Sanchez & Patricia Ortiz-Tello & Bernardo A Pons-Estel & Eduardo Acevedo-Vasquez & Pedro Miranda & Carl D La, 2015. "Genomic Insights into the Ancestry and Demographic History of South America," PLOS Genetics, Public Library of Science, vol. 11(12), pages 1-26, December.
    3. Jonathon P. Schuldt & Adam R. Pearson & Neil A. Lewis jr. & Ashley Jardina & Peter K. Enns, 2022. "Inequality and Misperceptions of Group Concerns Threaten the Integrity and Societal Impact of Science," The ANNALS of the American Academy of Political and Social Science, , vol. 700(1), pages 195-207, March.
    4. Md. Moksedul Momin & Jisu Shin & Soohyun Lee & Buu Truong & Beben Benyamin & S. Hong Lee, 2023. "A method for an unbiased estimate of cross-ancestry genetic correlation using individual-level data," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Kevin L Keys & Angel C Y Mak & Marquitta J White & Walter L Eckalbar & Andrew W Dahl & Joel Mefford & Anna V Mikhaylova & María G Contreras & Jennifer R Elhawary & Celeste Eng & Donglei Hu & Scott Hun, 2020. "On the cross-population generalizability of gene expression prediction models," PLOS Genetics, Public Library of Science, vol. 16(8), pages 1-28, August.
    6. Esteban J Parra & Andrew Mazurek & Christopher R Gignoux & Alexandra Sockell & Michael Agostino & Andrew P Morris & Lauren E Petty & Craig L Hanis & Nancy J Cox & Adan Valladares-Salgado & Jennifer E , 2017. "Admixture mapping in two Mexican samples identifies significant associations of locus ancestry with triglyceride levels in the BUD13/ZNF259/APOA5 region and fine mapping points to rs964184 as the main," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-16, February.
    7. Latife Pereira & Roxana Zamudio & Giordano Soares-Souza & Phabiola Herrera & Lilia Cabrera & Catherine C Hooper & Jaime Cok & Juan M Combe & Gloria Vargas & William A Prado & Silvana Schneider & Ferna, 2012. "Socioeconomic and Nutritional Factors Account for the Association of Gastric Cancer with Amerindian Ancestry in a Latin American Admixed Population," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-8, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1003925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.