IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1001024.html
   My bibliography  Save this article

Genome-Wide Screen in Saccharomyces cerevisiae Identifies Vacuolar Protein Sorting, Autophagy, Biosynthetic, and tRNA Methylation Genes Involved in Life Span Regulation

Author

Listed:
  • Paola Fabrizio
  • Shawn Hoon
  • Mehrnaz Shamalnasab
  • Abdulaye Galbani
  • Min Wei
  • Guri Giaever
  • Corey Nislow
  • Valter D Longo

Abstract

The study of the chronological life span of Saccharomyces cerevisiae, which measures the survival of populations of non-dividing yeast, has resulted in the identification of homologous genes and pathways that promote aging in organisms ranging from yeast to mammals. Using a competitive genome-wide approach, we performed a screen of a complete set of approximately 4,800 viable deletion mutants to identify genes that either increase or decrease chronological life span. Half of the putative short-/long-lived mutants retested from the primary screen were confirmed, demonstrating the utility of our approach. Deletion of genes involved in vacuolar protein sorting, autophagy, and mitochondrial function shortened life span, confirming that respiration and degradation processes are essential for long-term survival. Among the genes whose deletion significantly extended life span are ACB1, CKA2, and TRM9, implicated in fatty acid transport and biosynthesis, cell signaling, and tRNA methylation, respectively. Deletion of these genes conferred heat-shock resistance, supporting the link between life span extension and cellular protection observed in several model organisms. The high degree of conservation of these novel yeast longevity determinants in other species raises the possibility that their role in senescence might be conserved.Author Summary: Model organisms have been instrumental in uncovering genes that function to control life span and to identify the molecular pathways whose role in aging is conserved between the evolutionarily distant unicellular yeast and mice. Because yeast are particularly amenable to genetics and genomics studies, they have been used widely as model system for aging research. Here we have exploited a powerful genomic tool, the yeast deletion collection, to screen a pool of non-essential deletion mutants (∼4,800) to identify novel genes involved in the regulation of yeast chronological life span. Our results show that normal life span depends on functional mitochondria and on the cell's ability to degrade cellular components and proteins by autophagy. Our data indicate that a cell signaling protein, CK2, and diverse cellular processes such as fatty acid metabolism, amino acid biosynthesis, and tRNA modification modulate yeast chronological aging. The high level of conservation of the novel life span regulatory genes uncovered in this study suggests that their role in longevity regulation might be conserved in higher eukaryotes.

Suggested Citation

  • Paola Fabrizio & Shawn Hoon & Mehrnaz Shamalnasab & Abdulaye Galbani & Min Wei & Guri Giaever & Corey Nislow & Valter D Longo, 2010. "Genome-Wide Screen in Saccharomyces cerevisiae Identifies Vacuolar Protein Sorting, Autophagy, Biosynthetic, and tRNA Methylation Genes Involved in Life Span Regulation," PLOS Genetics, Public Library of Science, vol. 6(7), pages 1-14, July.
  • Handle: RePEc:plo:pgen00:1001024
    DOI: 10.1371/journal.pgen.1001024
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1001024
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1001024&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1001024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sina Ghaemmaghami & Won-Ki Huh & Kiowa Bower & Russell W. Howson & Archana Belle & Noah Dephoure & Erin K. O'Shea & Jonathan S. Weissman, 2003. "Global analysis of protein expression in yeast," Nature, Nature, vol. 425(6959), pages 737-741, October.
    2. John D. Storey, 2002. "A direct approach to false discovery rates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 479-498, August.
    3. Tibor Vellai & Krisztina Takacs-Vellai & Yue Zhang & Attila L. Kovacs & László Orosz & Fritz Müller, 2003. "Influence of TOR kinase on lifespan in C. elegans," Nature, Nature, vol. 426(6967), pages 620-620, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shinsuke Ohnuki & Yoshikazu Ohya, 2018. "High-dimensional single-cell phenotyping reveals extensive haploinsufficiency," PLOS Biology, Public Library of Science, vol. 16(5), pages 1-23, May.
    2. Youngchao Ge & Sandrine Dudoit & Terence Speed, 2003. "Resampling-based multiple testing for microarray data analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 12(1), pages 1-77, June.
    3. Bajgrowicz, Pierre & Scaillet, Olivier, 2012. "Technical trading revisited: False discoveries, persistence tests, and transaction costs," Journal of Financial Economics, Elsevier, vol. 106(3), pages 473-491.
    4. Jae Kyoung Kim & Eduardo D Sontag, 2017. "Reduction of multiscale stochastic biochemical reaction networks using exact moment derivation," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-24, June.
    5. Wen Shi & Xi Chen & Jennifer Shang, 2019. "An Efficient Morris Method-Based Framework for Simulation Factor Screening," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 745-770, October.
    6. Dørum Guro & Snipen Lars & Solheim Margrete & Saebo Solve, 2011. "Smoothing Gene Expression Data with Network Information Improves Consistency of Regulated Genes," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-26, August.
    7. Jianqing Fan & Xu Han, 2017. "Estimation of the false discovery proportion with unknown dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1143-1164, September.
    8. Kazunari Iwamoto & Yuki Shindo & Koichi Takahashi, 2016. "Modeling Cellular Noise Underlying Heterogeneous Cell Responses in the Epidermal Growth Factor Signaling Pathway," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-18, November.
    9. A Bottle & P Aylin, 2011. "Predicting the false alarm rate in multi-institution mortality monitoring," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(9), pages 1711-1718, September.
    10. Van Hanh Nguyen & Catherine Matias, 2014. "On Efficient Estimators of the Proportion of True Null Hypotheses in a Multiple Testing Setup," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 1167-1194, December.
    11. Shigeyuki Matsui & Hisashi Noma, 2011. "Estimating Effect Sizes of Differentially Expressed Genes for Power and Sample-Size Assessments in Microarray Experiments," Biometrics, The International Biometric Society, vol. 67(4), pages 1225-1235, December.
    12. Lianming Wang & David B. Dunson, 2010. "Semiparametric Bayes Multiple Testing: Applications to Tumor Data," Biometrics, The International Biometric Society, vol. 66(2), pages 493-501, June.
    13. Ebrahimi, Nader, 2008. "Simultaneous control of false positives and false negatives in multiple hypotheses testing," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 437-450, March.
    14. B. Moerkerke & E. Goetghebeur & J. De Riek & I. Roldán‐Ruiz, 2006. "Significance and impotence: towards a balanced view of the null and the alternative hypotheses in marker selection for plant breeding," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(1), pages 61-79, January.
    15. Zaili Fang & Inyoung Kim & Jeesun Jung, 2018. "Semiparametric Kernel-Based Regression for Evaluating Interaction Between Pathway Effect and Covariate," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(1), pages 129-152, March.
    16. Mark Rempel, 2016. "Improving Overnight Loan Identification in Payments Systems," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 48(2-3), pages 549-564, March.
    17. Timothy B. Armstrong, 2014. "Adaptive Testing on a Regression Function at a Point," Cowles Foundation Discussion Papers 1957R, Cowles Foundation for Research in Economics, Yale University, revised Feb 2015.
    18. Nucera, Federico & Valente, Giorgio, 2013. "Carry trades and the performance of currency hedge funds," Journal of International Money and Finance, Elsevier, vol. 33(C), pages 407-425.
    19. Nickole Moon & Christopher P. Morgan & Ruth Marx-Rattner & Alyssa Jeng & Rachel L. Johnson & Ijeoma Chikezie & Carmen Mannella & Mary D. Sammel & C. Neill Epperson & Tracy L. Bale, 2024. "Stress increases sperm respiration and motility in mice and men," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    20. Axel Gandy & Georg Hahn, 2016. "A Framework for Monte Carlo based Multiple Testing," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(4), pages 1046-1063, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1001024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.