Smoothing Gene Expression Data with Network Information Improves Consistency of Regulated Genes
Author
Abstract
Suggested Citation
DOI: 10.2202/1544-6115.1618
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wei Pan & Benhuai Xie & Xiaotong Shen, 2010. "Incorporating Predictor Network in Penalized Regression with Application to Microarray Data," Biometrics, The International Biometric Society, vol. 66(2), pages 474-484, June.
- Dørum Guro & Snipen Lars & Solheim Margrete & Sæbø Solve, 2009. "Rotation Testing in Gene Set Enrichment Analysis for Small Direct Comparison Experiments," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-26, July.
- Efron B. & Tibshirani R. & Storey J.D. & Tusher V., 2001. "Empirical Bayes Analysis of a Microarray Experiment," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1151-1160, December.
- Rahnenführer Jörg & Domingues Francisco S & Maydt Jochen & Lengauer Thomas, 2004. "Calculating the Statistical Significance of Changes in Pathway Activity From Gene Expression Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 3(1), pages 1-31, June.
- John D. Storey, 2002. "A direct approach to false discovery rates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 479-498, August.
- Shojaie Ali & Michailidis George, 2010. "Network Enrichment Analysis in Complex Experiments," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-36, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Brisbin Abra & Fridley Brooke L., 2013. "Bayesian genomic models for the incorporation of pathway topology knowledge into association studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(4), pages 505-516, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Youngchao Ge & Sandrine Dudoit & Terence Speed, 2003. "Resampling-based multiple testing for microarray data analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 12(1), pages 1-77, June.
- Wen Shi & Xi Chen & Jennifer Shang, 2019. "An Efficient Morris Method-Based Framework for Simulation Factor Screening," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 745-770, October.
- Xiaoquan Wen, 2017. "Robust Bayesian FDR Control Using Bayes Factors, with Applications to Multi-tissue eQTL Discovery," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(1), pages 28-49, June.
- Kline, Patrick & Walters, Christopher, 2019.
"Audits as Evidence: Experiments, Ensembles, and Enforcement,"
Institute for Research on Labor and Employment, Working Paper Series
qt3z72m9kn, Institute of Industrial Relations, UC Berkeley.
- Patrick Kline & Christopher Walters, 2019. "Audits as Evidence: Experiments, Ensembles, and Enforcement," Papers 1907.06622, arXiv.org, revised Jul 2019.
- Alejandro Ochoa & John D Storey & Manuel Llinás & Mona Singh, 2015. "Beyond the E-Value: Stratified Statistics for Protein Domain Prediction," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-21, November.
- E. M. Conlon & B. L. Postier & B. A. Methe & K. P. Nevin & D. R. Lovley, 2009. "Hierarchical Bayesian meta-analysis models for cross-platform microarray studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(10), pages 1067-1085.
- Izmirlian, Grant, 2020. "Strong consistency and asymptotic normality for quantities related to the Benjamini–Hochberg false discovery rate procedure," Statistics & Probability Letters, Elsevier, vol. 160(C).
- Chen, Xiongzhi, 2019. "Uniformly consistently estimating the proportion of false null hypotheses via Lebesgue–Stieltjes integral equations," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 724-744.
- Cipolli III, William & Hanson, Timothy & McLain, Alexander C., 2016. "Bayesian nonparametric multiple testing," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 64-79.
- Guo Wenge & Peddada Shyamal, 2008. "Adaptive Choice of the Number of Bootstrap Samples in Large Scale Multiple Testing," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-21, March.
- Alessio Farcomeni, 2006.
"More Powerful Control of the False Discovery Rate Under Dependence,"
Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(1), pages 43-73, May.
- Alessio Farcomeni, 2006. "More Powerful Control of the False Discovery Rate Under Dependence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(1), pages 43-73, May.
- Ang Li & Rina Foygel Barber, 2017. "Accumulation Tests for FDR Control in Ordered Hypothesis Testing," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 837-849, April.
- Patrick Kline & Christopher Walters, 2021.
"Reasonable Doubt: Experimental Detection of Job‐Level Employment Discrimination,"
Econometrica, Econometric Society, vol. 89(2), pages 765-792, March.
- Patrick M. Kline & Christopher R. Walters, 2020. "Reasonable Doubt: Experimental Detection of Job-Level Employment Discrimination," NBER Working Papers 26861, National Bureau of Economic Research, Inc.
- Nik Tuzov & Frederi Viens, 2011. "Mutual fund performance: false discoveries, bias, and power," Annals of Finance, Springer, vol. 7(2), pages 137-169, May.
- Leek Jeffrey T & Storey John D., 2011. "The Joint Null Criterion for Multiple Hypothesis Tests," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-22, June.
- Frank Emmert-Streib & Galina V Glazko, 2011. "Pathway Analysis of Expression Data: Deciphering Functional Building Blocks of Complex Diseases," PLOS Computational Biology, Public Library of Science, vol. 7(5), pages 1-6, May.
- Debashis Ghosh & Wei Chen & Trivellore Raghuanthan, 2004. "The false discovery rate: a variable selection perspective," The University of Michigan Department of Biostatistics Working Paper Series 1040, Berkeley Electronic Press.
- Miecznikowski, Jeffrey C. & Gold, David & Shepherd, Lori & Liu, Song, 2011. "Deriving and comparing the distribution for the number of false positives in single step methods to control k-FWER," Statistics & Probability Letters, Elsevier, vol. 81(11), pages 1695-1705, November.
- Laurent Barras & Olivier Scaillet & Russ Wermers, 2010.
"False Discoveries in Mutual Fund Performance: Measuring Luck in Estimated Alphas,"
Journal of Finance, American Finance Association, vol. 65(1), pages 179-216, February.
- Olivier Scaillet & Laurent Barras & Russell R. Wermers, 2005. "False Discoveries in Mutual Fund Performance: Measuring Luck in Estimated Alphas," Working Papers CEB 05-014.RS, ULB -- Universite Libre de Bruxelles.
- Barras, Laurent & Scaillet, Olivier & Wermers, Russ, 2009. "False discoveries in mutual fund performance: Measuring luck in estimated alphas," CFR Working Papers 06-02, University of Cologne, Centre for Financial Research (CFR).
- Laurent BARRAS & Olivier SCAILLET & Russ WERMERS, 2008. "False Discoveries in Mutual Fund Performance: Measuring Luck in Estimated Alphas," Swiss Finance Institute Research Paper Series 08-18, Swiss Finance Institute.
- Laurent BARRAS & Olivier SCAILLET & Russ WERMERS, 2005. "False Discoveries in Mutual Fund Performance: Measuring Luck in Estimated Alphas," FAME Research Paper Series rp163, International Center for Financial Asset Management and Engineering.
- Ishwaran, Hemant & Sunil Rao, J., 2008. "Clustering gene expression profile data by selective shrinkage," Statistics & Probability Letters, Elsevier, vol. 78(12), pages 1490-1497, September.
More about this item
Keywords
differentially expressed genes; gene network; gene set analysis; microarray data analysis; enrichment analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:10:y:2011:i:1:n:37. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.