IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1009629.html
   My bibliography  Save this article

Modeling the onset of symptoms of COVID-19: Effects of SARS-CoV-2 variant

Author

Listed:
  • Joseph R Larsen
  • Margaret R Martin
  • John D Martin
  • James B Hicks
  • Peter Kuhn

Abstract

Identifying order of symptom onset of infectious diseases might aid in differentiating symptomatic infections earlier in a population thereby enabling non-pharmaceutical interventions and reducing disease spread. Previously, we developed a mathematical model predicting the order of symptoms based on data from the initial outbreak of SARS-CoV-2 in China using symptom occurrence at diagnosis and found that the order of COVID-19 symptoms differed from that of other infectious diseases including influenza. Whether this order of COVID-19 symptoms holds in the USA under changing conditions is unclear. Here, we use modeling to predict the order of symptoms using data from both the initial outbreaks in China and in the USA. Whereas patients in China were more likely to have fever before cough and then nausea/vomiting before diarrhea, patients in the USA were more likely to have cough before fever and then diarrhea before nausea/vomiting. Given that the D614G SARS-CoV-2 variant that rapidly spread from Europe to predominate in the USA during the first wave of the outbreak was not present in the initial China outbreak, we hypothesized that this mutation might affect symptom order. Supporting this notion, we found that as SARS-CoV-2 in Japan shifted from the original Wuhan reference strain to the D614G variant, symptom order shifted to the USA pattern. Google Trends analyses supported these findings, while weather, age, and comorbidities did not affect our model’s predictions of symptom order. These findings indicate that symptom order can change with mutation in viral disease and raise the possibility that D614G variant is more transmissible because infected people are more likely to cough in public before being incapacitated with fever.Author summary: We developed a mathematical model to predict symptom order of symptomatic COVID-19 cases from patient characteristics data in the USA and China. Surprisingly, our model predicted that cough occurs first in the USA, while fever occurs first in China. We hypothesized the difference is due to the SARS-CoV-2 D614G variant, which was predominate in the USA during data collection, whereas the original Wuhan reference strain was predominate in China. To test this, we used patient data from the outbreak in Japan, which was initially dominated by the Wuhan reference strain but eventually dominated by the D614G variant. The predicted symptom order changed with the viral variant, but not region, weather, patient age, or comorbidity. These results support the notion that cough occurs earlier in the D614G variant than the Wuhan reference strain. The D614G variant’s greater transmissibility might be explained by infected individuals coughing and spreading the virus before they are incapacitated by fever. Additionally, we hope other researchers will further investigate symptom order of infectious diseases to understand how viral variants and comorbidities affect disease progression. Such work is especially important now as contagious and deadly variants of SARS-CoV-2 are under investigation and rapidly spreading worldwide.

Suggested Citation

  • Joseph R Larsen & Margaret R Martin & John D Martin & James B Hicks & Peter Kuhn, 2021. "Modeling the onset of symptoms of COVID-19: Effects of SARS-CoV-2 variant," PLOS Computational Biology, Public Library of Science, vol. 17(12), pages 1-28, December.
  • Handle: RePEc:plo:pcbi00:1009629
    DOI: 10.1371/journal.pcbi.1009629
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009629
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1009629&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1009629?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jaber S Alqahtani & Tope Oyelade & Abdulelah M Aldhahir & Saeed M Alghamdi & Mater Almehmadi & Abdullah S Alqahtani & Shumonta Quaderi & Swapna Mandal & John R Hurst, 2020. "Prevalence, Severity and Mortality associated with COPD and Smoking in patients with COVID-19: A Rapid Systematic Review and Meta-Analysis," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-13, May.
    2. Nicholas G. Davies & Christopher I. Jarvis & W. John Edmunds & Nicholas P. Jewell & Karla Diaz-Ordaz & Ruth H. Keogh, 2021. "Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7," Nature, Nature, vol. 593(7858), pages 270-274, May.
    3. N. Beerenwinkel & S. Sullivant, 2009. "Markov models for accumulating mutations," Biometrika, Biometrika Trust, vol. 96(3), pages 645-661.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimitra Kale & Olga Perski & Aleksandra Herbec & Emma Beard & Lion Shahab, 2022. "Changes in Cigarette Smoking and Vaping in Response to the COVID-19 Pandemic in the UK: Findings from Baseline and 12-Month Follow up of HEBECO Study," IJERPH, MDPI, vol. 19(2), pages 1-16, January.
    2. Eugenia Lee & Stephanie Pike Moore & Erika Trapl & Craig S. Fryer & Douglas Gunzler & Kymberle L. Sterling, 2022. "Changes in Little Cigar and Cigarillo Use during the COVID-19 Pandemic: A Cross-Sectional Analysis of a Nationally Representative Sample of Young Adult Users," IJERPH, MDPI, vol. 19(15), pages 1-11, July.
    3. Aurea Lima & Hugo Sousa & Amanda Nobre & Ana Luisa Faria & Manuela Machado, 2021. "The Impact of COVID-19 Pandemic in Portuguese Cancer Patients: A Retrospective Study," IJERPH, MDPI, vol. 18(16), pages 1-15, August.
    4. Xiang Ge Luo & Jack Kuipers & Niko Beerenwinkel, 2023. "Joint inference of exclusivity patterns and recurrent trajectories from tumor mutation trees," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Beatrice Casati & Joseph Peter Verdi & Alexander Hempelmann & Maximilian Kittel & Andrea Gutierrez Klaebisch & Bianca Meister & Sybille Welker & Sonal Asthana & Salvatore Giorgio & Pavle Boskovic & Ka, 2022. "Rapid, adaptable and sensitive Cas13-based COVID-19 diagnostics using ADESSO," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Sheng-Chieh Lee & Ching-Yuan Lin & Ying-Ji Chuang, 2022. "The Study of Alternative Fire Commanders’ Training Program during the COVID-19 Pandemic Situation in New Taipei City, Taiwan," IJERPH, MDPI, vol. 19(11), pages 1-22, May.
    7. Juan Yang & Valentina Marziano & Xiaowei Deng & Giorgio Guzzetta & Juanjuan Zhang & Filippo Trentini & Jun Cai & Piero Poletti & Wen Zheng & Wei Wang & Qianhui Wu & Zeyao Zhao & Kaige Dong & Guangjie , 2021. "Despite vaccination, China needs non-pharmaceutical interventions to prevent widespread outbreaks of COVID-19 in 2021," Nature Human Behaviour, Nature, vol. 5(8), pages 1009-1020, August.
    8. Chi Zhu & Justin Y. Lee & Jia Z. Woo & Lei Xu & Xammy Nguyenla & Livia H. Yamashiro & Fei Ji & Scott B. Biering & Erik Dis & Federico Gonzalez & Douglas Fox & Eddie Wehri & Arjun Rustagi & Benjamin A., 2022. "An intranasal ASO therapeutic targeting SARS-CoV-2," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    9. Mariaelena Gonzalez & Anna E. Epperson & Bonnie Halpern-Felsher & Deanna M. Halliday & Anna V. Song, 2021. "Smokers Are More Likely to Smoke More after the COVID-19 California Lockdown Order," IJERPH, MDPI, vol. 18(5), pages 1-9, March.
    10. Irfan, Muhammad & Akram, Waqar & James Hooper, Vincent, 2020. "What factors can help COVID-19 patients to recover quickly in Pakistan," MPRA Paper 103053, University Library of Munich, Germany, revised 15 Sep 2020.
    11. Rosanna C. Barnard & Nicholas G. Davies & Mark Jit & W. John Edmunds, 2022. "Modelling the medium-term dynamics of SARS-CoV-2 transmission in England in the Omicron era," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    12. Louisa L. Y. Chan & Danielle E. Anderson & Hong Sheng Cheng & Fransiskus Xaverius Ivan & Si Chen & Adrian E. Z. Kang & Randy Foo & Akshamal M. Gamage & Pei Yee Tiew & Mariko Siyue Koh & Ken Cheah Hooi, 2022. "The establishment of COPD organoids to study host-pathogen interaction reveals enhanced viral fitness of SARS-CoV-2 in bronchi," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    13. Yirui Ma & Jie Deng & Qiao Liu & Min Du & Min Liu & Jue Liu, 2022. "Long-Term Consequences of COVID-19 at 6 Months and Above: A Systematic Review and Meta-Analysis," IJERPH, MDPI, vol. 19(11), pages 1-16, June.
    14. Beerenwinkel Niko & Knupfer Patrick & Tresch Achim, 2011. "Learning Monotonic Genotype-Phenotype Maps," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-27, January.
    15. Khurshid, Adnan & Chen, Yufeng & Rauf, Abdur & Khan, Khalid, 2023. "Critical metals in uncertainty: How Russia-Ukraine conflict drives their prices?," Resources Policy, Elsevier, vol. 85(PB).
    16. Chengzhuo Tong & Wenzhong Shi & Anshu Zhang & Zhicheng Shi, 2023. "Predicting onset risk of COVID-19 symptom to support healthy travel route planning in the new normal of long-term coexistence with SARS-CoV-2," Environment and Planning B, , vol. 50(5), pages 1212-1227, June.
    17. Mitze, Timo & Rode, Johannes, 2022. "Early-stage spatial disease surveillance of novel SARS-CoV-2 variants of concern in Germany with crowdsourced data," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 130543, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    18. Moritz Gerstung & Niko Beerenwinkel, 2010. "Waiting Time Models of Cancer Progression," Mathematical Population Studies, Taylor & Francis Journals, vol. 17(3), pages 115-135.
    19. Lei Peng & Yingxia Hu & Madeleine C. Mankowski & Ping Ren & Rita E. Chen & Jin Wei & Min Zhao & Tongqing Li & Therese Tripler & Lupeng Ye & Ryan D. Chow & Zhenhao Fang & Chunxiang Wu & Matthew B. Dong, 2022. "Monospecific and bispecific monoclonal SARS-CoV-2 neutralizing antibodies that maintain potency against B.1.617," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    20. Wenjuan Dong & Jing Wang & Lei Tian & Jianying Zhang & Erik W. Settles & Chao Qin & Daniel R. Steinken-Kollath & Ashley N. Itogawa & Kimberly R. Celona & Jinhee Yi & Mitchell Bryant & Heather Mead & S, 2023. "Factor Xa cleaves SARS-CoV-2 spike protein to block viral entry and infection," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1009629. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.