IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1009584.html
   My bibliography  Save this article

The role of competition versus cooperation in microbial community coalescence

Author

Listed:
  • Pablo Lechón-Alonso
  • Tom Clegg
  • Jacob Cook
  • Thomas P Smith
  • Samraat Pawar

Abstract

New microbial communities often arise through the mixing of two or more separately assembled parent communities, a phenomenon that has been termed “community coalescence”. Understanding how the interaction structures of complex parent communities determine the outcomes of coalescence events is an important challenge. While recent work has begun to elucidate the role of competition in coalescence, that of cooperation, a key interaction type commonly seen in microbial communities, is still largely unknown. Here, using a general consumer-resource model, we study the combined effects of competitive and cooperative interactions on the outcomes of coalescence events. To do so, we simulate coalescence events between pairs of communities with different degrees of competition for shared carbon resources and cooperation through cross-feeding on leaked metabolic by-products (facilitation). We also study how structural and functional properties of post-coalescence communities evolve when they are subjected to repeated coalescence events. We find that in coalescence events, the less competitive and more cooperative parent communities contribute a higher proportion of species to the new community because of their superior ability to deplete resources and resist invasions. Consequently, when a community is subjected to repeated coalescence events, it gradually evolves towards being less competitive and more cooperative, as well as more speciose, robust and efficient in resource use. Encounters between microbial communities are becoming increasingly frequent as a result of anthropogenic environmental change, and there is great interest in how the coalescence of microbial communities affects environmental and human health. Our study provides new insights into the mechanisms behind microbial community coalescence, and a framework to predict outcomes based on the interaction structures of parent communities.Author summary: In nature, new microbial communities often arise from the fusion of whole, previously separate communities (community coalescence). Despite the crucial role that interactions among microbes play in the dynamics of complex communities, our ability to predict how these affect the outcomes of coalescence events remains limited. Here, using a general mathematical model, we study how the structure of species interactions confers an advantage upon a microbial community when it encounters another, and how communities evolve after undergoing repeated coalescence events. We find that competitive interactions between species preclude their survival upon a coalescence event, while cooperative interactions are advantageous for post-coalescence survival. Furthermore, after a community is exposed to many coalescence events, the remaining species become less competitive and more cooperative. Ultimately, this drives the community evolution, yielding post-coalescence communities that are more species-rich, productive, and resistant to invasions. There are many potential environmental and health implications of microbial community coalescence, which will benefit from the theoretical insights that we offer here about the fundamental mechanisms underlying this phenomenon.

Suggested Citation

  • Pablo Lechón-Alonso & Tom Clegg & Jacob Cook & Thomas P Smith & Samraat Pawar, 2021. "The role of competition versus cooperation in microbial community coalescence," PLOS Computational Biology, Public Library of Science, vol. 17(11), pages 1-16, November.
  • Handle: RePEc:plo:pcbi00:1009584
    DOI: 10.1371/journal.pcbi.1009584
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009584
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1009584&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1009584?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hanno Seebens & Tim M. Blackburn & Ellie E. Dyer & Piero Genovesi & Philip E. Hulme & Jonathan M. Jeschke & Shyama Pagad & Petr Pyšek & Marten Winter & Margarita Arianoutsou & Sven Bacher & Bernd Blas, 2017. "No saturation in the accumulation of alien species worldwide," Nature Communications, Nature, vol. 8(1), pages 1-9, April.
    2. Susse Kirkelund Hansen & Paul B. Rainey & Janus A. J. Haagensen & Søren Molin, 2007. "Evolution of species interactions in a biofilm community," Nature, Nature, vol. 445(7127), pages 533-536, February.
    3. Alberto Pascual-García & Ugo Bastolla, 2017. "Mutualism supports biodiversity when the direct competition is weak," Nature Communications, Nature, vol. 8(1), pages 1-13, April.
    4. Yoav Kallus & John H. Miller & Eric Libby, 2017. "Paradoxes in leaky microbial trade," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    5. Rajagopal, 2012. "Competition versus Cooperation," Palgrave Macmillan Books, in: Darwinian Fitness in the Global Marketplace, chapter 5, pages 132-163, Palgrave Macmillan.
    6. Helen M Kurkjian & M Javad Akbari & Babak Momeni, 2021. "The impact of interactions on invasion and colonization resistance in microbial communities," PLOS Computational Biology, Public Library of Science, vol. 17(1), pages 1-18, January.
    7. Ugo Bastolla & Miguel A. Fortuna & Alberto Pascual-García & Antonio Ferrera & Bartolo Luque & Jordi Bascompte, 2009. "The architecture of mutualistic networks minimizes competition and increases biodiversity," Nature, Nature, vol. 458(7241), pages 1018-1020, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sabine Dritz & Rebecca A. Nelson & Fernanda S. Valdovinos, 2023. "The role of intra-guild indirect interactions in assembling plant-pollinator networks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Wang, Xiangrong & Peron, Thomas & Dubbeldam, Johan L.A. & Kéfi, Sonia & Moreno, Yamir, 2023. "Interspecific competition shapes the structural stability of mutualistic networks," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    3. Cristina Fiera & Jan Christian Habel & Werner Ulrich, 2018. "Neutral colonisations drive high beta-diversity in cavernicole springtails (Collembola)," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-12, January.
    4. Guohuan Su & Adam Mertel & Sébastien Brosse & Justin M. Calabrese, 2023. "Species invasiveness and community invasibility of North American freshwater fish fauna revealed via trait-based analysis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Colton Brehm & Astrid Layton, 2021. "Nestedness of eco‐industrial networks: Exploring linkage distribution to promote sustainable industrial growth," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 205-218, February.
    6. Benadi, Gita & Blüthgen, Nico & Hovestadt, Thomas & Poethke, Hans-Joachim, 2013. "Contrasting specialization–stability relationships in plant–animal mutualistic systems," Ecological Modelling, Elsevier, vol. 258(C), pages 65-73.
    7. Aliyu, Murtala Bello & Mohd, Mohd Hafiz, 2021. "The interplay between mutualism, competition and dispersal promotes species coexistence in a multiple interactions type system," Ecological Modelling, Elsevier, vol. 452(C).
    8. Hopfensitz, Astrid & Mantilla, Cesar, 2019. "Emotional expressions by sports teams: An analysis of World Cup soccer player portraits," Journal of Economic Psychology, Elsevier, vol. 75(PB).
    9. Leto Peel & Tiago P. Peixoto & Manlio De Domenico, 2022. "Statistical inference links data and theory in network science," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. Fabio Saracco & Riccardo Di Clemente & Andrea Gabrielli & Tiziano Squartini, 2015. "Detecting early signs of the 2007-2008 crisis in the world trade," Papers 1508.03533, arXiv.org, revised Jul 2016.
    11. Jean-Pierre Thomassen & Marijke C. Leliveld & Kees Ahaus & Steven Walle, 2020. "Prosocial Compensation Following a Service Failure: Fulfilling an Organization’s Ethical and Philanthropic Responsibilities," Journal of Business Ethics, Springer, vol. 162(1), pages 123-147, February.
    12. Timothée Poisot & Sonia Kéfi & Serge Morand & Michal Stanko & Pablo A Marquet & Michael E Hochberg, 2015. "A Continuum of Specialists and Generalists in Empirical Communities," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-12, May.
    13. Sebastián Bustos & Charles Gomez & Ricardo Hausmann & César A Hidalgo, 2012. "The Dynamics of Nestedness Predicts the Evolution of Industrial Ecosystems," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-8, November.
    14. Singer, Alexander & Johst, Karin & Banitz, Thomas & Fowler, Mike S. & Groeneveld, Jürgen & Gutiérrez, Alvaro G. & Hartig, Florian & Krug, Rainer M. & Liess, Matthias & Matlack, Glenn & Meyer, Katrin M, 2016. "Community dynamics under environmental change: How can next generation mechanistic models improve projections of species distributions?," Ecological Modelling, Elsevier, vol. 326(C), pages 63-74.
    15. Paul Battlay & Jonathan Wilson & Vanessa C. Bieker & Christopher Lee & Diana Prapas & Bent Petersen & Sam Craig & Lotte Boheemen & Romain Scalone & Nissanka P. Silva & Amit Sharma & Bojan Konstantinov, 2023. "Large haploblocks underlie rapid adaptation in the invasive weed Ambrosia artemisiifolia," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    16. Mika J. Straka & Guido Caldarelli & Tiziano Squartini & Fabio Saracco, 2017. "From Ecology to Finance (and Back?): Recent Advancements in the Analysis of Bipartite Networks," Papers 1710.10143, arXiv.org.
    17. Roberto Cazzolla Gatti & Roger Koppl & Brian D. Fath & Stuart Kauffman & Wim Hordijk & Robert E. Ulanowicz, 2020. "On the emergence of ecological and economic niches," Journal of Bioeconomics, Springer, vol. 22(2), pages 99-127, July.
    18. Tuomo Mäki-Marttunen & Juha Kesseli & Matti Nykter, 2013. "Balance between Noise and Information Flow Maximizes Set Complexity of Network Dynamics," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-10, March.
    19. Kun Guo & Petr Pyšek & Mark Kleunen & Nicole L. Kinlock & Magdalena Lučanová & Ilia J. Leitch & Simon Pierce & Wayne Dawson & Franz Essl & Holger Kreft & Bernd Lenzner & Jan Pergl & Patrick Weigelt & , 2024. "Plant invasion and naturalization are influenced by genome size, ecology and economic use globally," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    20. Zhu, Haoqi & Wang, Maoxiang & Hu, Fenglan, 2018. "Interaction and coexistence with self-regulating species," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 447-458.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1009584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.