IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0114674.html
   My bibliography  Save this article

A Continuum of Specialists and Generalists in Empirical Communities

Author

Listed:
  • Timothée Poisot
  • Sonia Kéfi
  • Serge Morand
  • Michal Stanko
  • Pablo A Marquet
  • Michael E Hochberg

Abstract

Understanding the persistence of specialists and generalists within ecological communities is a topical research question, with far-reaching consequences for the maintenance of functional diversity. Although theoretical studies indicate that restricted conditions may be necessary to achieve co-occurrence of specialists and generalists, analyses of larger empirical (and species-rich) communities reveal the pervasiveness of coexistence. In this paper, we analyze 175 ecological bipartite networks of three interaction types (animal hosts–parasite, plant–herbivore and plant–pollinator), and measure the extent to which these communities are composed of species with different levels of specificity in their biotic interactions. We find a continuum from specialism to generalism. Furthermore, we demonstrate that diversity tends to be greatest in networks with intermediate connectance, and argue this is because of physical constraints in the filling of networks.

Suggested Citation

  • Timothée Poisot & Sonia Kéfi & Serge Morand & Michal Stanko & Pablo A Marquet & Michael E Hochberg, 2015. "A Continuum of Specialists and Generalists in Empirical Communities," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-12, May.
  • Handle: RePEc:plo:pone00:0114674
    DOI: 10.1371/journal.pone.0114674
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0114674
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0114674&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0114674?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Richard J Williams, 2011. "Biology, Methodology or Chance? The Degree Distributions of Bipartite Ecological Networks," PLOS ONE, Public Library of Science, vol. 6(3), pages 1-7, March.
    2. Sonja B. Otto & Björn C. Rall & Ulrich Brose, 2007. "Allometric degree distributions facilitate food-web stability," Nature, Nature, vol. 450(7173), pages 1226-1229, December.
    3. Ugo Bastolla & Miguel A. Fortuna & Alberto Pascual-García & Antonio Ferrera & Bartolo Luque & Jordi Bascompte, 2009. "The architecture of mutualistic networks minimizes competition and increases biodiversity," Nature, Nature, vol. 458(7241), pages 1018-1020, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Floriane Jacquemin & Cyrille Violle & François Munoz & Grégory Mahy & Pierre Rasmont & Stuart P M Roberts & Sarah Vray & Marc Dufrêne, 2020. "Loss of pollinator specialization revealed by historical opportunistic data: Insights from network-based analysis," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-18, July.
    2. M Umut Caglar & Adam J Hockenberry & Claus O Wilke, 2018. "Predicting bacterial growth conditions from mRNA and protein abundances," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-22, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mika J. Straka & Guido Caldarelli & Tiziano Squartini & Fabio Saracco, 2017. "From Ecology to Finance (and Back?): Recent Advancements in the Analysis of Bipartite Networks," Papers 1710.10143, arXiv.org.
    2. González, Cecilia, 2023. "Evolution of the concept of ecological integrity and its study through networks," Ecological Modelling, Elsevier, vol. 476(C).
    3. Cristina Fiera & Jan Christian Habel & Werner Ulrich, 2018. "Neutral colonisations drive high beta-diversity in cavernicole springtails (Collembola)," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-12, January.
    4. Colton Brehm & Astrid Layton, 2021. "Nestedness of eco‐industrial networks: Exploring linkage distribution to promote sustainable industrial growth," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 205-218, February.
    5. Benadi, Gita & Blüthgen, Nico & Hovestadt, Thomas & Poethke, Hans-Joachim, 2013. "Contrasting specialization–stability relationships in plant–animal mutualistic systems," Ecological Modelling, Elsevier, vol. 258(C), pages 65-73.
    6. Wang, Xinhe & Lu, Junwei & Wang, Zhen & Li, Yuxia, 2020. "Dynamics of discrete epidemic models on heterogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    7. Leto Peel & Tiago P. Peixoto & Manlio De Domenico, 2022. "Statistical inference links data and theory in network science," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Fabio Saracco & Riccardo Di Clemente & Andrea Gabrielli & Tiziano Squartini, 2015. "Detecting early signs of the 2007-2008 crisis in the world trade," Papers 1508.03533, arXiv.org, revised Jul 2016.
    9. Sabine Dritz & Rebecca A. Nelson & Fernanda S. Valdovinos, 2023. "The role of intra-guild indirect interactions in assembling plant-pollinator networks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Sebastián Bustos & Charles Gomez & Ricardo Hausmann & César A Hidalgo, 2012. "The Dynamics of Nestedness Predicts the Evolution of Industrial Ecosystems," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-8, November.
    11. Singer, Alexander & Johst, Karin & Banitz, Thomas & Fowler, Mike S. & Groeneveld, Jürgen & Gutiérrez, Alvaro G. & Hartig, Florian & Krug, Rainer M. & Liess, Matthias & Matlack, Glenn & Meyer, Katrin M, 2016. "Community dynamics under environmental change: How can next generation mechanistic models improve projections of species distributions?," Ecological Modelling, Elsevier, vol. 326(C), pages 63-74.
    12. Wang, Xinhe & Wang, Zhen, 2022. "Bifurcation and propagation dynamics of a discrete pair SIS epidemic model on networks with correlation coefficient," Applied Mathematics and Computation, Elsevier, vol. 435(C).
    13. Roberto Cazzolla Gatti & Roger Koppl & Brian D. Fath & Stuart Kauffman & Wim Hordijk & Robert E. Ulanowicz, 2020. "On the emergence of ecological and economic niches," Journal of Bioeconomics, Springer, vol. 22(2), pages 99-127, July.
    14. Tuomo Mäki-Marttunen & Juha Kesseli & Matti Nykter, 2013. "Balance between Noise and Information Flow Maximizes Set Complexity of Network Dynamics," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-10, March.
    15. Borrett, Stuart R. & Moody, James & Edelmann, Achim, 2014. "The rise of Network Ecology: Maps of the topic diversity and scientific collaboration," Ecological Modelling, Elsevier, vol. 293(C), pages 111-127.
    16. , D. & Tessone, Claudio J. & ,, 2014. "Nestedness in networks: A theoretical model and some applications," Theoretical Economics, Econometric Society, vol. 9(3), September.
    17. Wanming Chen & Shengyuan Wang & Xiaolan Wu, 2022. "Growth Mechanism and Synchronization Effect of China’s New Energy Vehicle Enterprises: An Empirical Analysis Based on Moving Logistic and Kuramoto Model," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    18. Pramesh Singh & Jayaram Uparna & Panagiotis Karampourniotis & Emoke-Agnes Horvat & Boleslaw Szymanski & Gyorgy Korniss & Jonathan Z Bakdash & Brian Uzzi, 2018. "Peer-to-peer lending and bias in crowd decision-making," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-18, March.
    19. Laura Hernandez & Annick Vignes & Stéphanie Saba, 2018. "Trust or robustness? An ecological approach to the study of auction and bilateral markets," Post-Print hal-02005040, HAL.
    20. Fujiwara, Masami, 2016. "Incorporating demographic diversity into food web models: Effects on community structure and dynamics," Ecological Modelling, Elsevier, vol. 322(C), pages 10-18.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0114674. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.