IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1008697.html
   My bibliography  Save this article

FastTrack: An open-source software for tracking varying numbers of deformable objects

Author

Listed:
  • Benjamin Gallois
  • Raphaël Candelier

Abstract

Analyzing the dynamical properties of mobile objects requires to extract trajectories from recordings, which is often done by tracking movies. We compiled a database of two-dimensional movies for very different biological and physical systems spanning a wide range of length scales and developed a general-purpose, optimized, open-source, cross-platform, easy to install and use, self-updating software called FastTrack. It can handle a changing number of deformable objects in a region of interest, and is particularly suitable for animal and cell tracking in two-dimensions. Furthermore, we introduce the probability of incursions as a new measure of a movie’s trackability that doesn’t require the knowledge of ground truth trajectories, since it is resilient to small amounts of errors and can be computed on the basis of an ad hoc tracking. We also leveraged the versatility and speed of FastTrack to implement an iterative algorithm determining a set of nearly-optimized tracking parameters—yet further reducing the amount of human intervention—and demonstrate that FastTrack can be used to explore the space of tracking parameters to optimize the number of swaps for a batch of similar movies. A benchmark shows that FastTrack is orders of magnitude faster than state-of-the-art tracking algorithms, with a comparable tracking accuracy. The source code is available under the GNU GPLv3 at https://github.com/FastTrackOrg/FastTrack and pre-compiled binaries for Windows, Mac and Linux are available at http://www.fasttrack.sh.Author summary: Many researchers and engineers face the challenge of tracking objects from very different systems across several fields of research. We observed that despite this diversity the core of the tracking task is very general and can be formalized. We thus introduce the notion of incursions—i.e. to what extent an object can enter a neighbor’s space—which can be defined on a statistical basis and captures the interplay between the acquisition rate, the objects’ dynamics and the geometrical characteristics of the scene, including density. To validate this approach, we compiled a dataset from various fields of Physics, Biology and human activities to serve as a benchmark for general-purpose tracking softwares. This dataset is open and accepts new submissions. We also developped a software called FastTrack that is able to track most of the movies in the dataset by proposing standard image processing tools and state-of-the-art implementation of the matching algorithm, which is at the core of the tracking task. Besides, it is open-source, simple to install and use and has an ergonomic interface to obtain fast and reliable results. FastTrack is particularly convenient for small-scale research projects, typically when the development of a dedicated software is overkill.

Suggested Citation

  • Benjamin Gallois & Raphaël Candelier, 2021. "FastTrack: An open-source software for tracking varying numbers of deformable objects," PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-19, February.
  • Handle: RePEc:plo:pcbi00:1008697
    DOI: 10.1371/journal.pcbi.1008697
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008697
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1008697&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1008697?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Antoine Bricard & Jean-Baptiste Caussin & Nicolas Desreumaux & Olivier Dauchot & Denis Bartolo, 2013. "Emergence of macroscopic directed motion in populations of motile colloids," Nature, Nature, vol. 503(7474), pages 95-98, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maxime Hubert & Stéphane Perrard & Nicolas Vandewalle & Matthieu Labousse, 2022. "Overload wave-memory induces amnesia of a self-propelled particle," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Chepizhko, Oleksandr & Kulinskii, Vladimir, 2014. "The hydrodynamic description for the system of self-propelled particles: Ideal Viscek fluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 493-502.
    3. Federico Pratissoli & Andreagiovanni Reina & Yuri Kaszubowski Lopes & Carlo Pinciroli & Genki Miyauchi & Lorenzo Sabattini & Roderich Groß, 2023. "Coherent movement of error-prone individuals through mechanical coupling," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Noman Hanif Barbhuiya & A. G. Yodh & Chandan K. Mishra, 2023. "Direction-dependent dynamics of colloidal particle pairs and the Stokes-Einstein relation in quasi-two-dimensional fluids," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. David T. Limmer & Chloe Y. Gao & Anthony R. Poggioli, 2021. "A large deviation theory perspective on nanoscale transport phenomena," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(7), pages 1-16, July.
    6. Bibi Najma & Minu Varghese & Lev Tsidilkovski & Linnea Lemma & Aparna Baskaran & Guillaume Duclos, 2022. "Competing instabilities reveal how to rationally design and control active crosslinked gels," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Helena Massana-Cid & Claudio Maggi & Giacomo Frangipane & Roberto Di Leonardo, 2022. "Rectification and confinement of photokinetic bacteria in an optical feedback loop," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Matthew S. E. Peterson & Aparna Baskaran & Michael F. Hagan, 2021. "Vesicle shape transformations driven by confined active filaments," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    9. Chung Wing Chan & Daihui Wu & Kaiyao Qiao & Kin Long Fong & Zhiyu Yang & Yilong Han & Rui Zhang, 2024. "Chiral active particles are sensitive reporters to environmental geometry," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Bo Zhang & Andreas Glatz & Igor S. Aranson & Alexey Snezhko, 2023. "Spontaneous shock waves in pulse-stimulated flocks of Quincke rollers," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    11. Stephen Williams & Raphaël Jeanneret & Idan Tuval & Marco Polin, 2022. "Confinement-induced accumulation and de-mixing of microscopic active-passive mixtures," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. Solenn Riedel & Ludwig A. Hoffmann & Luca Giomi & Daniela J. Kraft, 2024. "Designing highly efficient interlocking interactions in anisotropic active particles," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Dai, X. & Kovalenko, K. & Molodyk, M. & Wang, Z. & Li, X. & Musatov, D. & Raigorodskii, A.M. & Alfaro-Bittner, K. & Cooper, G.D. & Bianconi, G. & Boccaletti, S., 2021. "D-dimensional oscillators in simplicial structures: Odd and even dimensions display different synchronization scenarios," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    14. Alberto Dinelli & Jérémy O’Byrne & Agnese Curatolo & Yongfeng Zhao & Peter Sollich & Julien Tailleur, 2023. "Non-reciprocity across scales in active mixtures," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Cristóvão S. Dias & Manish Trivedi & Giovanni Volpe & Nuno A. M. Araújo & Giorgio Volpe, 2023. "Environmental memory boosts group formation of clueless individuals," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Gaurav Gardi & Steven Ceron & Wendong Wang & Kirstin Petersen & Metin Sitti, 2022. "Microrobot collectives with reconfigurable morphologies, behaviors, and functions," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    17. Yuan Shen & Ingo Dierking, 2022. "Electrically tunable collective motion of dissipative solitons in chiral nematic films," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1008697. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.