IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1008625.html
   My bibliography  Save this article

mbkmeans: Fast clustering for single cell data using mini-batch k-means

Author

Listed:
  • Stephanie C Hicks
  • Ruoxi Liu
  • Yuwei Ni
  • Elizabeth Purdom
  • Davide Risso

Abstract

Single-cell RNA-Sequencing (scRNA-seq) is the most widely used high-throughput technology to measure genome-wide gene expression at the single-cell level. One of the most common analyses of scRNA-seq data detects distinct subpopulations of cells through the use of unsupervised clustering algorithms. However, recent advances in scRNA-seq technologies result in current datasets ranging from thousands to millions of cells. Popular clustering algorithms, such as k-means, typically require the data to be loaded entirely into memory and therefore can be slow or impossible to run with large datasets. To address this problem, we developed the mbkmeans R/Bioconductor package, an open-source implementation of the mini-batch k-means algorithm. Our package allows for on-disk data representations, such as the common HDF5 file format widely used for single-cell data, that do not require all the data to be loaded into memory at one time. We demonstrate the performance of the mbkmeans package using large datasets, including one with 1.3 million cells. We also highlight and compare the computing performance of mbkmeans against the standard implementation of k-means and other popular single-cell clustering methods. Our software package is available in Bioconductor at https://bioconductor.org/packages/mbkmeans.Author summary: We developed the mbkmeans package (https://bioconductor.org/packages/mbkmeans) in Bioconductor, an open-source implementation of the mini-batch k-means algorithm. Our package allows for on-disk data representations, such as the common HDF5 file format widely used for single-cell data, that do not require all the data to be loaded into memory at one time.

Suggested Citation

  • Stephanie C Hicks & Ruoxi Liu & Yuwei Ni & Elizabeth Purdom & Davide Risso, 2021. "mbkmeans: Fast clustering for single cell data using mini-batch k-means," PLOS Computational Biology, Public Library of Science, vol. 17(1), pages 1-18, January.
  • Handle: RePEc:plo:pcbi00:1008625
    DOI: 10.1371/journal.pcbi.1008625
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008625
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1008625&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1008625?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. A. Hartigan & M. A. Wong, 1979. "A K‐Means Clustering Algorithm," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 28(1), pages 100-108, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Linhua Wang & Mirjana Maletic-Savatic & Zhandong Liu, 2022. "Region-specific denoising identifies spatial co-expression patterns and intra-tissue heterogeneity in spatially resolved transcriptomics data," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Weibin & Zha, Huazhu & Zhang, Shuai & Ma, Lei, 2023. "Road section traffic flow prediction method based on the traffic factor state network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    2. Jelle R Dalenberg & Luca Nanetti & Remco J Renken & René A de Wijk & Gert J ter Horst, 2014. "Dealing with Consumer Differences in Liking during Repeated Exposure to Food; Typical Dynamics in Rating Behavior," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-11, March.
    3. Custodio João, Igor & Lucas, André & Schaumburg, Julia & Schwaab, Bernd, 2023. "Dynamic clustering of multivariate panel data," Journal of Econometrics, Elsevier, vol. 237(2).
    4. Utkarsh J. Dang & Michael P.B. Gallaugher & Ryan P. Browne & Paul D. McNicholas, 2023. "Model-Based Clustering and Classification Using Mixtures of Multivariate Skewed Power Exponential Distributions," Journal of Classification, Springer;The Classification Society, vol. 40(1), pages 145-167, April.
    5. Bernd Scherer & Diogo Judice & Stephan Kessler, 2010. "Price reversals in global equity markets," Journal of Asset Management, Palgrave Macmillan, vol. 11(5), pages 332-345, December.
    6. Ugofilippo Basellini & Carlo Giovanni Camarda, 2020. "Modelling COVID-19 mortality at the regional level in Italy," Working Papers axq0sudakgkzhr-blecv, French Institute for Demographic Studies.
    7. Jing Xiao & Qiongqiong Xu & Chuanli Wu & Yuexia Gao & Tianqi Hua & Chenwu Xu, 2016. "Performance Evaluation of Missing-Value Imputation Clustering Based on a Multivariate Gaussian Mixture Model," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-14, August.
    8. Humberto Elias Garcia Lopes & Marlusa de Sevilha Gosling, 2021. "Cluster Analysis in Practice: Dealing with Outliers in Managerial Research," RAC - Revista de Administração Contemporânea (Journal of Contemporary Administration), ANPAD - Associação Nacional de Pós-Graduação e Pesquisa em Administração, vol. 25(1), pages 200081-2000.
    9. Mónika-Anetta Alt & Vizeli Ibolya, 2021. "Identifying Relevant Segments of Potential Banking Chatbot Users Based on Technology Adoption Behavior," Tržište/Market, Faculty of Economics and Business, University of Zagreb, vol. 33(2), pages 165-183.
    10. Naderi, Mehrdad & Hung, Wen-Liang & Lin, Tsung-I & Jamalizadeh, Ahad, 2019. "A novel mixture model using the multivariate normal mean–variance mixture of Birnbaum–Saunders distributions and its application to extrasolar planets," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 126-138.
    11. Alan Fernihough & Kevin Hjortshøj, 2021. "Coal and the European Industrial Revolution," The Economic Journal, Royal Economic Society, vol. 131(635), pages 1135-1149.
    12. Mohiuddin, Hossain & Fitch-Polse, Dillon T. & Handy, Susan L., 2024. "Examining market segmentation to increase bike-share use and enhance equity: The case of the greater Sacramento region," Transport Policy, Elsevier, vol. 145(C), pages 279-290.
    13. Roberto Benocci & Giovanni Brambilla & Alessandro Bisceglie & Giovanni Zambon, 2020. "Eco-Acoustic Indices to Evaluate Soundscape Degradation Due to Human Intrusion," Sustainability, MDPI, vol. 12(24), pages 1-19, December.
    14. Emma L. Schultz & David T. Tan & Kathleen D. Walsh, 2010. "Endogeneity and the corporate governance - performance relation," Australian Journal of Management, Australian School of Business, vol. 35(2), pages 145-163, August.
    15. Ting Liu & Nick Shryane & Mark Elliot, 2022. "Attitudes to climate change risk: classification of and transitions in the UK population between 2012 and 2020," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-15, December.
    16. Renata De Paris & Christian V Quevedo & Duncan D A Ruiz & Osmar Norberto de Souza, 2015. "An Effective Approach for Clustering InhA Molecular Dynamics Trajectory Using Substrate-Binding Cavity Features," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-25, July.
    17. Stefania Salvatore & Diana Domanska & Mollie Wood & Hedvig Nordeng & Geir Kjetil Sandve, 2017. "Complex patterns of concomitant medication use: A study among Norwegian women using paracetamol during pregnancy," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-11, December.
    18. F. Murtagh & M. Hernández-Pajares, 1995. "The Kohonen self-organizing map method: An assessment," Journal of Classification, Springer;The Classification Society, vol. 12(2), pages 165-190, September.
    19. Köchling, Anne, 2022. "Zwischen Reisemotivation und Reisebarrieren: Analyse von Urlaubseinstellungstypen in neun westlichen Ländern nach fast zwei Jahren Corona-Pandemie," Working Paper Series 2, Deutsches Institut für Tourismusforschung, Fachhochschule Westküste.
    20. Senfeng Cen & Jae Hung Yoo & Chang Gyoon Lim, 2022. "Electricity Pattern Analysis by Clustering Domestic Load Profiles Using Discrete Wavelet Transform," Energies, MDPI, vol. 15(4), pages 1-18, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1008625. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.