IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1008301.html
   My bibliography  Save this article

Aggregating forecasts of multiple respiratory pathogens supports more accurate forecasting of influenza-like illness

Author

Listed:
  • Sen Pei
  • Jeffrey Shaman

Abstract

Influenza-like illness (ILI) is a commonly measured syndromic signal representative of a range of acute respiratory infections. Reliable forecasts of ILI can support better preparation for patient surges in healthcare systems. Although ILI is an amalgamation of multiple pathogens with variable seasonal phasing and attack rates, most existing process-based forecasting systems treat ILI as a single infectious agent. Here, using ILI records and virologic surveillance data, we show that ILI signal can be disaggregated into distinct viral components. We generate separate predictions for six contributing pathogens (influenza A/H1, A/H3, B, respiratory syncytial virus, and human parainfluenza virus types 1–2 and 3), and develop a method to forecast ILI by aggregating these predictions. The relative contribution of each pathogen to the total ILI signal is estimated using a Markov Chain Monte Carlo (MCMC) method upon forecast aggregation. We find highly variable overall contributions from influenza type A viruses across seasons, but relatively stable contributions for the other pathogens. Using historical data from 1997 to 2014 at US national and regional levels, the proposed forecasting system generates improved predictions of both seasonal and near-term targets relative to a baseline method that simulates ILI as a single pathogen. The hierarchical forecasting system can generate predictions for each viral component, as well as infer and predict their contributions to ILI, which may additionally help physicians determine the etiological causes of ILI in clinical settings.Author summary: Influenza-like illness (ILI) is a widely used medical diagnosis of possible infection with influenza or another acute respiratory illness. Accurate forecasting of ILI can support better planning of interventions against respiratory infections, as well as early preparation for patient surges in healthcare facilities during periods of peak incidence. Although ILI is an amalgamation of multiple pathogens with variable seasonal phasing and contributions to incidence, to our knowledge, all existing process-based forecasting systems treat ILI as a single infectious agent. This leads to model misspecification that compromises forecast precision. In this study, we address this issue by forecasting ILI as the aggregation of predictions for individual contributing respiratory viruses. Using ILI records and virologic surveillance data, we show that ILI signal can be disaggregated into distinct viral components and develop a method to forecast ILI by aggregating predictions for six pathogens. We find highly variable overall contributions from influenza type A viruses across seasons, but relatively stable contributions from other pathogens. In retrospective forecasts, the proposed multi-pathogen forecasting system generates substantially more accurate predictions of both seasonal and near-term targets relative to a baseline method that simulates ILI as a single pathogen.

Suggested Citation

  • Sen Pei & Jeffrey Shaman, 2020. "Aggregating forecasts of multiple respiratory pathogens supports more accurate forecasting of influenza-like illness," PLOS Computational Biology, Public Library of Science, vol. 16(10), pages 1-19, October.
  • Handle: RePEc:plo:pcbi00:1008301
    DOI: 10.1371/journal.pcbi.1008301
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008301
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1008301&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1008301?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Evan L Ray & Nicholas G Reich, 2018. "Prediction of infectious disease epidemics via weighted density ensembles," PLOS Computational Biology, Public Library of Science, vol. 14(2), pages 1-23, February.
    2. Dylan B. George & Wendy Taylor & Jeffrey Shaman & Caitlin Rivers & Brooke Paul & Tara O’Toole & Michael A. Johansson & Lynette Hirschman & Matthew Biggerstaff & Jason Asher & Nicholas G. Reich, 2019. "Technology to advance infectious disease forecasting for outbreak management," Nature Communications, Nature, vol. 10(1), pages 1-4, December.
    3. Logan C Brooks & David C Farrow & Sangwon Hyun & Ryan J Tibshirani & Roni Rosenfeld, 2015. "Flexible Modeling of Epidemics with an Empirical Bayes Framework," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-18, August.
    4. Drew A. Linzer, 2013. "Dynamic Bayesian Forecasting of Presidential Elections in the States," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 124-134, March.
    5. David C Farrow & Logan C Brooks & Sangwon Hyun & Ryan J Tibshirani & Donald S Burke & Roni Rosenfeld, 2017. "A human judgment approach to epidemiological forecasting," PLOS Computational Biology, Public Library of Science, vol. 13(3), pages 1-19, March.
    6. Sen Pei & Jeffrey Shaman, 2017. "Counteracting structural errors in ensemble forecast of influenza outbreaks," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    7. Levy, Nir & Iv, Michael & Yom-Tov, Elad, 2018. "Modeling influenza-like illnesses through composite compartmental models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 288-293.
    8. Michal Ben-Nun & Pete Riley & James Turtle & David P Bacon & Steven Riley, 2019. "Forecasting national and regional influenza-like illness for the USA," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-20, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Logan C Brooks & David C Farrow & Sangwon Hyun & Ryan J Tibshirani & Roni Rosenfeld, 2018. "Nonmechanistic forecasts of seasonal influenza with iterative one-week-ahead distributions," PLOS Computational Biology, Public Library of Science, vol. 14(6), pages 1-29, June.
    2. Junyi Lu & Sebastian Meyer, 2020. "Forecasting Flu Activity in the United States: Benchmarking an Endemic-Epidemic Beta Model," IJERPH, MDPI, vol. 17(4), pages 1-13, February.
    3. Nicholas G Reich & Craig J McGowan & Teresa K Yamana & Abhinav Tushar & Evan L Ray & Dave Osthus & Sasikiran Kandula & Logan C Brooks & Willow Crawford-Crudell & Graham Casey Gibson & Evan Moore & Reb, 2019. "Accuracy of real-time multi-model ensemble forecasts for seasonal influenza in the U.S," PLOS Computational Biology, Public Library of Science, vol. 15(11), pages 1-19, November.
    4. Arthur Novaes de Amorim & Rob Deardon & Vineet Saini, 2021. "A stacked ensemble method for forecasting influenza-like illness visit volumes at emergency departments," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-15, March.
    5. Petropoulos, Fotios & Makridakis, Spyros & Stylianou, Neophytos, 2022. "COVID-19: Forecasting confirmed cases and deaths with a simple time series model," International Journal of Forecasting, Elsevier, vol. 38(2), pages 439-452.
    6. Steven E. Rigdon & Jason J. Sauppe & Sheldon H. Jacobson, 2015. "Forecasting the 2012 and 2014 Elections Using Bayesian Prediction and Optimization," SAGE Open, , vol. 5(2), pages 21582440155, April.
    7. repec:cup:judgdm:v:15:y:2020:i:5:p:863-880 is not listed on IDEAS
    8. Jeffrey S Chrabaszcz & Joe W Tidwell & Michael R Dougherty, 2017. "Crowdsourcing prior information to improve study design and data analysis," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-16, November.
    9. Lauderdale, Benjamin E. & Bailey, Delia & Blumenau, Jack & Rivers, Douglas, 2020. "Model-based pre-election polling for national and sub-national outcomes in the US and UK," International Journal of Forecasting, Elsevier, vol. 36(2), pages 399-413.
    10. Richard J. Cebula & Gigi M. Alexander, 2017. "Female Labor Force Participation and Voter Turnout: Evidence from the American Presidential Elections," Review of Economics and Institutions, Università di Perugia, vol. 8(2).
    11. Andrew Gelman & Jessica Hullman & Christopher Wlezien & George Elliott Morris, 2020. "Information, incentives, and goals in election forecasts," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 15(5), pages 863-880, September.
    12. Denis A Shah & Erick D De Wolf & Pierce A Paul & Laurence V Madden, 2021. "Accuracy in the prediction of disease epidemics when ensembling simple but highly correlated models," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-23, March.
    13. David C Farrow & Logan C Brooks & Sangwon Hyun & Ryan J Tibshirani & Donald S Burke & Roni Rosenfeld, 2017. "A human judgment approach to epidemiological forecasting," PLOS Computational Biology, Public Library of Science, vol. 13(3), pages 1-19, March.
    14. Zeynep Ertem & Dorrie Raymond & Lauren Ancel Meyers, 2018. "Optimal multi-source forecasting of seasonal influenza," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-16, September.
    15. Kang, Seungwoo & Oh, Hee-Seok, 2024. "Forecasting South Korea’s presidential election via multiparty dynamic Bayesian modeling," International Journal of Forecasting, Elsevier, vol. 40(1), pages 124-141.
    16. Michael S Deiner & Lee Worden & Alex Rittel & Sarah F Ackley & Fengchen Liu & Laura Blum & James C Scott & Thomas M Lietman & Travis C Porco, 2017. "Short-term leprosy forecasting from an expert opinion survey," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-13, August.
    17. Yan Hao & Ting Xu & Hongping Hu & Peng Wang & Yanping Bai, 2020. "Prediction and analysis of Corona Virus Disease 2019," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-15, October.
    18. Lauderdale, Benjamin E. & Linzer, Drew, 2015. "Under-performing, over-performing, or just performing? The limitations of fundamentals-based presidential election forecasting," International Journal of Forecasting, Elsevier, vol. 31(3), pages 965-979.
    19. Wang, Samuel S.-H., 2015. "Origins of Presidential poll aggregation: A perspective from 2004 to 2012," International Journal of Forecasting, Elsevier, vol. 31(3), pages 898-909.
    20. Nadeau, Richard & Lewis-Beck, Michael S., 2020. "Election forecasts: Cracking the Danish case," International Journal of Forecasting, Elsevier, vol. 36(3), pages 892-898.
    21. Ray, Evan L. & Brooks, Logan C. & Bien, Jacob & Biggerstaff, Matthew & Bosse, Nikos I. & Bracher, Johannes & Cramer, Estee Y. & Funk, Sebastian & Gerding, Aaron & Johansson, Michael A. & Rumack, Aaron, 2023. "Comparing trained and untrained probabilistic ensemble forecasts of COVID-19 cases and deaths in the United States," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1366-1383.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1008301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.