IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-01033-1.html
   My bibliography  Save this article

Counteracting structural errors in ensemble forecast of influenza outbreaks

Author

Listed:
  • Sen Pei

    (Mailman School of Public Health, Columbia University)

  • Jeffrey Shaman

    (Mailman School of Public Health, Columbia University)

Abstract

For influenza forecasts generated using dynamical models, forecast inaccuracy is partly attributable to the nonlinear growth of error. As a consequence, quantification of the nonlinear error structure in current forecast models is needed so that this growth can be corrected and forecast skill improved. Here, we inspect the error growth of a compartmental influenza model and find that a robust error structure arises naturally from the nonlinear model dynamics. By counteracting these structural errors, diagnosed using error breeding, we develop a new forecast approach that combines dynamical error correction and statistical filtering techniques. In retrospective forecasts of historical influenza outbreaks for 95 US cities from 2003 to 2014, overall forecast accuracy for outbreak peak timing, peak intensity and attack rate, are substantially improved for predicted lead times up to 10 weeks. This error growth correction method can be generalized to improve the forecast accuracy of other infectious disease dynamical models.

Suggested Citation

  • Sen Pei & Jeffrey Shaman, 2017. "Counteracting structural errors in ensemble forecast of influenza outbreaks," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01033-1
    DOI: 10.1038/s41467-017-01033-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-01033-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-01033-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sen Pei & Jeffrey Shaman, 2020. "Aggregating forecasts of multiple respiratory pathogens supports more accurate forecasting of influenza-like illness," PLOS Computational Biology, Public Library of Science, vol. 16(10), pages 1-19, October.
    2. Haobo Ni & Xiaoyan Cai & Jiarong Ren & Tingting Dai & Jiayi Zhou & Jiumin Lin & Li Wang & Lingxi Wang & Sen Pei & Yunchong Yao & Ting Xu & Lina Xiao & Qiyong Liu & Xiaobo Liu & Pi Guo, 2024. "Epidemiological characteristics and transmission dynamics of dengue fever in China," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Sebastian Funk & Anton Camacho & Adam J Kucharski & Rachel Lowe & Rosalind M Eggo & W John Edmunds, 2019. "Assessing the performance of real-time epidemic forecasts: A case study of Ebola in the Western Area region of Sierra Leone, 2014-15," PLOS Computational Biology, Public Library of Science, vol. 15(2), pages 1-17, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01033-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.