IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v580y2020i7804d10.1038_s41586-020-2176-1.html
   My bibliography  Save this article

Extant timetrees are consistent with a myriad of diversification histories

Author

Listed:
  • Stilianos Louca

    (University of Oregon
    University of Oregon)

  • Matthew W. Pennell

    (University of British Columbia
    University of British Columbia)

Abstract

Time-calibrated phylogenies of extant species (referred to here as ‘extant timetrees’) are widely used for estimating diversification dynamics1. However, there has been considerable debate surrounding the reliability of these inferences2–5 and, to date, this critical question remains unresolved. Here we clarify the precise information that can be extracted from extant timetrees under the generalized birth–death model, which underlies most existing methods of estimation. We prove that, for any diversification scenario, there exists an infinite number of alternative diversification scenarios that are equally likely to have generated any given extant timetree. These ‘congruent’ scenarios cannot possibly be distinguished using extant timetrees alone, even in the presence of infinite data. Importantly, congruent diversification scenarios can exhibit markedly different and yet similarly plausible dynamics, which suggests that many previous studies may have over-interpreted phylogenetic evidence. We introduce identifiable and easily interpretable variables that contain all available information about past diversification dynamics, and demonstrate that these can be estimated from extant timetrees. We suggest that measuring and modelling these identifiable variables offers a more robust way to study historical diversification dynamics. Our findings also make it clear that palaeontological data will continue to be crucial for answering some macroevolutionary questions.

Suggested Citation

  • Stilianos Louca & Matthew W. Pennell, 2020. "Extant timetrees are consistent with a myriad of diversification histories," Nature, Nature, vol. 580(7804), pages 502-505, April.
  • Handle: RePEc:nat:nature:v:580:y:2020:i:7804:d:10.1038_s41586-020-2176-1
    DOI: 10.1038/s41586-020-2176-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-2176-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-2176-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrew F Magee & Sebastian Höhna & Tetyana I Vasylyeva & Adam D Leaché & Vladimir N Minin, 2020. "Locally adaptive Bayesian birth-death model successfully detects slow and rapid rate shifts," PLOS Computational Biology, Public Library of Science, vol. 16(10), pages 1-23, October.
    2. Dimitar Dimitrov & Xiaoting Xu & Xiangyan Su & Nawal Shrestha & Yunpeng Liu & Jonathan D. Kennedy & Lisha Lyu & David Nogués-Bravo & James Rosindell & Yong Yang & Jon Fjeldså & Jianquan Liu & Bernhard, 2023. "Diversification of flowering plants in space and time," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Gen Morinaga & John J. Wiens & Daniel S. Moen, 2023. "The radiation continuum and the evolution of frog diversity," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Sarah T. Friedman & Martha M. Muñoz, 2023. "A latitudinal gradient of deep-sea invasions for marine fishes," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Joseph T. Flannery-Sutherland & Cameron D. Crossan & Corinne E. Myers & Austin J. W. Hendy & Neil H. Landman & James D. Witts, 2024. "Late Cretaceous ammonoids show that drivers of diversification are regionally heterogeneous," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Mark P. Khurana & Jacob Curran-Sebastian & Neil Scheidwasser & Christian Morgenstern & Morten Rasmussen & Jannik Fonager & Marc Stegger & Man-Hung Eric Tang & Jonas L. Juul & Leandro Andrés Escobar-He, 2024. "High-resolution epidemiological landscape from ~290,000 SARS-CoV-2 genomes from Denmark," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Jamie B. Thompson & Tania Hernández-Hernández & Georgia Keeling & Marilyn Vásquez-Cruz & Nicholas K. Priest, 2024. "Identifying the multiple drivers of cactus diversification," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Bonnie B. Blaimer & Bernardo F. Santos & Astrid Cruaud & Michael W. Gates & Robert R. Kula & István Mikó & Jean-Yves Rasplus & David R. Smith & Elijah J. Talamas & Seán G. Brady & Matthew L. Buffingto, 2023. "Key innovations and the diversification of Hymenoptera," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    9. Joan Garcia-Porta & Daniel Sol & Matt Pennell & Ferran Sayol & Antigoni Kaliontzopoulou & Carlos A. Botero, 2022. "Niche expansion and adaptive divergence in the global radiation of crows and ravens," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:580:y:2020:i:7804:d:10.1038_s41586-020-2176-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.