IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29707-5.html
   My bibliography  Save this article

Niche expansion and adaptive divergence in the global radiation of crows and ravens

Author

Listed:
  • Joan Garcia-Porta

    (Washington University in St. Louis
    CREAF, Centre for Ecological Research and Applied Forestries)

  • Daniel Sol

    (CREAF, Centre for Ecological Research and Applied Forestries
    CSIC, Spanish National Research Council, CREAF-UAB)

  • Matt Pennell

    (University of British Columbia)

  • Ferran Sayol

    (University College London)

  • Antigoni Kaliontzopoulou

    (Universitat de Barcelona)

  • Carlos A. Botero

    (Washington University in St. Louis)

Abstract

The processes that allow some lineages to diversify rapidly at a global scale remain poorly understood. Although earlier studies emphasized the importance of dispersal, global expansions expose populations to novel environments and may also require adaptation and diversification across new niches. In this study, we investigated the contributions of these processes to the global radiation of crows and ravens (genus Corvus). Combining a new phylogeny with comprehensive phenotypic and climatic data, we show that Corvus experienced a massive expansion of the climatic niche that was coupled with a substantial increase in the rates of species and phenotypic diversification. The initiation of these processes coincided with the evolution of traits that promoted dispersal and niche expansion. Our findings suggest that rapid global radiations may be better understood as processes in which high dispersal abilities synergise with traits that, like cognition, facilitate persistence in new environments.

Suggested Citation

  • Joan Garcia-Porta & Daniel Sol & Matt Pennell & Ferran Sayol & Antigoni Kaliontzopoulou & Carlos A. Botero, 2022. "Niche expansion and adaptive divergence in the global radiation of crows and ravens," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29707-5
    DOI: 10.1038/s41467-022-29707-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29707-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29707-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vicencio Oostra & Marjo Saastamoinen & Bas J. Zwaan & Christopher W. Wheat, 2018. "Strong phenotypic plasticity limits potential for evolutionary responses to climate change," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    2. Daniel Sol & Núria Garcia & Andrew Iwaniuk & Katie Davis & Andrew Meade & W Alice Boyle & Tamás Székely, 2010. "Evolutionary Divergence in Brain Size between Migratory and Resident Birds," PLOS ONE, Public Library of Science, vol. 5(3), pages 1-8, March.
    3. Jonathan B. Losos & Robert E. Ricklefs, 2009. "Adaptation and diversification on islands," Nature, Nature, vol. 457(7231), pages 830-836, February.
    4. Ferran Sayol & Joan Maspons & Oriol Lapiedra & Andrew N. Iwaniuk & Tamás Székely & Daniel Sol, 2016. "Environmental variation and the evolution of large brains in birds," Nature Communications, Nature, vol. 7(1), pages 1-8, December.
    5. Stilianos Louca & Matthew W. Pennell, 2020. "Extant timetrees are consistent with a myriad of diversification histories," Nature, Nature, vol. 580(7804), pages 502-505, April.
    6. Catherine Sheard & Montague H. C. Neate-Clegg & Nico Alioravainen & Samuel E. I. Jones & Claire Vincent & Hannah E. A. MacGregor & Tom P. Bregman & Santiago Claramunt & Joseph A. Tobias, 2020. "Ecological drivers of global gradients in avian dispersal inferred from wing morphology," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    7. W. Jetz & G. H. Thomas & J. B. Joy & K. Hartmann & A. O. Mooers, 2012. "The global diversity of birds in space and time," Nature, Nature, vol. 491(7424), pages 444-448, November.
    8. Xia Wang & Alistair J McGowan & Gareth J Dyke, 2011. "Avian Wing Proportions and Flight Styles: First Step towards Predicting the Flight Modes of Mesozoic Birds," PLOS ONE, Public Library of Science, vol. 6(12), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Mikula & Oldřich Tomášek & Dušan Romportl & Timothy K. Aikins & Jorge E. Avendaño & Bukola D. A. Braimoh-Azaki & Adams Chaskda & Will Cresswell & Susan J. Cunningham & Svein Dale & Gabriela R. F, 2023. "Bird tolerance to humans in open tropical ecosystems," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Yichen He & Zoë K. Varley & Lara O. Nouri & Christopher J. A. Moody & Michael D. Jardine & Steve Maddock & Gavin H. Thomas & Christopher R. Cooney, 2022. "Deep learning image segmentation reveals patterns of UV reflectance evolution in passerine birds," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Sarah T. Friedman & Martha M. Muñoz, 2023. "A latitudinal gradient of deep-sea invasions for marine fishes," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Jamie B. Thompson & Tania Hernández-Hernández & Georgia Keeling & Marilyn Vásquez-Cruz & Nicholas K. Priest, 2024. "Identifying the multiple drivers of cactus diversification," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Jonathan A. Rader & Tyson L. Hedrick, 2023. "Morphological evolution of bird wings follows a mechanical sensitivity gradient determined by the aerodynamics of flapping flight," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Andrew F Magee & Sebastian Höhna & Tetyana I Vasylyeva & Adam D Leaché & Vladimir N Minin, 2020. "Locally adaptive Bayesian birth-death model successfully detects slow and rapid rate shifts," PLOS Computational Biology, Public Library of Science, vol. 16(10), pages 1-23, October.
    7. Dimitar Dimitrov & Xiaoting Xu & Xiangyan Su & Nawal Shrestha & Yunpeng Liu & Jonathan D. Kennedy & Lisha Lyu & David Nogués-Bravo & James Rosindell & Yong Yang & Jon Fjeldså & Jianquan Liu & Bernhard, 2023. "Diversification of flowering plants in space and time," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    8. Rachel A. Steward & Maaike A. de Jong & Vicencio Oostra & Christopher W. Wheat, 2022. "Alternative splicing in seasonal plasticity and the potential for adaptation to environmental change," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    9. Guido Montúfar & Keyan Ghazi-Zahedi & Nihat Ay, 2015. "A Theory of Cheap Control in Embodied Systems," PLOS Computational Biology, Public Library of Science, vol. 11(9), pages 1-22, September.
    10. Eli M Swanson & Kay E Holekamp & Barbara L Lundrigan & Bradley M Arsznov & Sharleen T Sakai, 2012. "Multiple Determinants of Whole and Regional Brain Volume among Terrestrial Carnivorans," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-11, June.
    11. Justin W. Baldwin & Joan Garcia-Porta & Carlos A. Botero, 2023. "Complementarity in Allen’s and Bergmann’s rules among birds," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Alexandra McQueen & Marcel Klaassen & Glenn J. Tattersall & Robyn Atkinson & Roz Jessop & Chris J. Hassell & Maureen Christie & Matthew R. E. Symonds, 2022. "Thermal adaptation best explains Bergmann’s and Allen’s Rules across ecologically diverse shorebirds," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    13. Elspeth Kenny & Tim R. Birkhead & Jonathan P. Green, 2017. "Allopreening in birds is associated with parental cooperation over offspring care and stable pair bonds across years," Behavioral Ecology, International Society for Behavioral Ecology, vol. 28(4), pages 1142-1148.
    14. Shan Su & Phillip Cassey & Miquel Vall-llosera & Tim M Blackburn, 2015. "Going Cheap: Determinants of Bird Price in the Taiwanese Pet Market," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-17, May.
    15. Herkt, K. Matthias B. & Barnikel, Günter & Skidmore, Andrew K. & Fahr, Jakob, 2016. "A high-resolution model of bat diversity and endemism for continental Africa," Ecological Modelling, Elsevier, vol. 320(C), pages 9-28.
    16. Andrea Santangeli & Benjamin Weigel & Laura H. Antão & Elina Kaarlejärvi & Maria Hällfors & Aleksi Lehikoinen & Andreas Lindén & Maija Salemaa & Tiina Tonteri & Päivi Merilä & Kristiina Vuorio & Otso , 2023. "Mixed effects of a national protected area network on terrestrial and freshwater biodiversity," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Michael Pittman & Phil R. Bell & Case Vincent Miller & Nathan J. Enriquez & Xiaoli Wang & Xiaoting Zheng & Leah R. Tsang & Yuen Ting Tse & Michael Landes & Thomas G. Kaye, 2022. "Exceptional preservation and foot structure reveal ecological transitions and lifestyles of early theropod flyers," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    18. Muhammad Nawaz Rajpar & Shahab Ali Khan & Allah Ditta & Hayssam M. Ali & Sami Ullah & Muhammad Ibrahim & Altaf Hussain Rajpar & Mohamed Zakaria & Mohamed Z. M. Salem, 2021. "Subtropical Broad-Leaved Urban Forests as the Foremost Dynamic and Complex Habitats for a Wide Range of Bird Species," Sustainability, MDPI, vol. 13(23), pages 1-20, November.
    19. Maxime Policarpo & Maude W. Baldwin & Didier Casane & Walter Salzburger, 2024. "Diversity and evolution of the vertebrate chemoreceptor gene repertoire," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    20. Diogo S M Samia & Daniel T Blumstein, 2014. "Phi Index: A New Metric to Test the Flush Early and Avoid the Rush Hypothesis," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-13, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29707-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.