IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1007977.html
   My bibliography  Save this article

Somatic hypermutation analysis for improved identification of B cell clonal families from next-generation sequencing data

Author

Listed:
  • Nima Nouri
  • Steven H Kleinstein

Abstract

Adaptive immune receptor repertoire sequencing (AIRR-Seq) offers the possibility of identifying and tracking B cell clonal expansions during adaptive immune responses. Members of a B cell clone are descended from a common ancestor and share the same initial V(D)J rearrangement, but their B cell receptor (BCR) sequence may differ due to the accumulation of somatic hypermutations (SHMs). Clonal relationships are learned from AIRR-seq data by analyzing the BCR sequence, with the most common methods focused on the highly diverse junction region. However, clonally related cells often share SHMs which have been accumulated during affinity maturation. Here, we investigate whether shared SHMs in the V and J segments of the BCR can be leveraged along with the junction sequence to improve the ability to identify clonally related sequences. We develop independent distance functions that capture junction similarity and shared mutations, and combine these in a spectral clustering framework to infer the BCR clonal relationships. Using both simulated and experimental data, we show that this model improves both the sensitivity and specificity for identifying B cell clones. Source code for this method is freely available in the SCOPer (Spectral Clustering for clOne Partitioning) R package (version 0.2 or newer) in the Immcantation framework: www.immcantation.org under the AGPLv3 license.Author summary: B cells recognize antigens through their BCR. During adaptive immune responses, antigen-specific B cells undergo intense proliferation. This B cell clonal expansion is coupled with a process of SHM, which results in the accumulation of mutations in the DNA encoding the BCR. Within the specialized micro-environment of the germinal center, these diversified B cells compete for antigen binding and presentation to follicular helper T cells. Successful binding leads to repeated cycles of proliferation, SHM and affinity-dependent selection ultimately resulting in the generation of high-affinity memory and antibody-secreting plasma cells. Driven by dramatic improvements in high-throughput sequencing technologies, large-scale characterization of BCR repertoires is now feasible. However, a critical barrier to quantitative analysis of these large-scale BCR repertoire data is the accurate identification of B cell clones. B cells are inferred to be clonally related if the distance between their BCR sequences is close enough. This paper develops a hybrid distance function that integrates information from the V(D)J recombination process (distance between CDR3 sequences), along with information from a common history of clonal expansion (shared SHMs in the V and J segments of the BCR) to improve the ability to identify clonally related sequences.

Suggested Citation

  • Nima Nouri & Steven H Kleinstein, 2020. "Somatic hypermutation analysis for improved identification of B cell clonal families from next-generation sequencing data," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-22, June.
  • Handle: RePEc:plo:pcbi00:1007977
    DOI: 10.1371/journal.pcbi.1007977
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007977
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007977&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1007977?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Duncan K Ralph & Frederick A Matsen IV, 2016. "Likelihood-Based Inference of B Cell Clonal Families," PLOS Computational Biology, Public Library of Science, vol. 12(10), pages 1-28, October.
    2. Bryan Briney & Anne Inderbitzin & Collin Joyce & Dennis R. Burton, 2019. "Commonality despite exceptional diversity in the baseline human antibody repertoire," Nature, Nature, vol. 566(7744), pages 393-397, February.
    3. Cinque Soto & Robin G. Bombardi & Andre Branchizio & Nurgun Kose & Pranathi Matta & Alexander M. Sevy & Robert S. Sinkovits & Pavlo Gilchuk & Jessica A. Finn & James E. Crowe, 2019. "High frequency of shared clonotypes in human B cell receptor repertoires," Nature, Nature, vol. 566(7744), pages 398-402, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aleksandr Kovaltsuk & Matthew I J Raybould & Wing Ki Wong & Claire Marks & Sebastian Kelm & James Snowden & Johannes Trück & Charlotte M Deane, 2020. "Structural diversity of B-cell receptor repertoires along the B-cell differentiation axis in humans and mice," PLOS Computational Biology, Public Library of Science, vol. 16(2), pages 1-20, February.
    2. Eduardo Gomez-Bañuelos & Yikai Yu & Jessica Li & Kevin S. Cashman & Merlin Paz & Maria Isabel Trejo-Zambrano & Regina Bugrovsky & Youliang Wang & Asiya Seema Chida & Cheryl A. Sherman-Baust & Dylan P., 2023. "Affinity maturation generates pathogenic antibodies with dual reactivity to DNase1L3 and dsDNA in systemic lupus erythematosus," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Oscar L. Rodriguez & Yana Safonova & Catherine A. Silver & Kaitlyn Shields & William S. Gibson & Justin T. Kos & David Tieri & Hanzhong Ke & Katherine J. L. Jackson & Scott D. Boyd & Melissa L. Smith , 2023. "Genetic variation in the immunoglobulin heavy chain locus shapes the human antibody repertoire," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    4. Nina G. Bozhanova & Andrew I. Flyak & Benjamin P. Brown & Stormy E. Ruiz & Jordan Salas & Semi Rho & Robin G. Bombardi & Luke Myers & Cinque Soto & Justin R. Bailey & James E. Crowe & Pamela J. Bjorkm, 2022. "Computational identification of HCV neutralizing antibodies with a common HCDR3 disulfide bond motif in the antibody repertoires of infected individuals," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Yubin Liu & Ziyi Wang & Xinyu Zhuang & Shengnan Zhang & Zhicheng Chen & Yan Zou & Jie Sheng & Tianpeng Li & Wanbo Tai & Jinfang Yu & Yanqun Wang & Zhaoyong Zhang & Yunfeng Chen & Liangqin Tong & Xi Yu, 2023. "Inactivated vaccine-elicited potent antibodies can broadly neutralize SARS-CoV-2 circulating variants," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    6. Joan Capella-Pujol & Marlon Gast & Laura Radić & Ian Zon & Ana Chumbe & Sylvie Koekkoek & Wouter Olijhoek & Janke Schinkel & Marit J. Gils & Rogier W. Sanders & Kwinten Sliepen, 2023. "Signatures of VH1-69-derived hepatitis C virus neutralizing antibody precursors defined by binding to envelope glycoproteins," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Chengzi I. Kaku & Tyler N. Starr & Panpan Zhou & Haley L. Dugan & Paul Khalifé & Ge Song & Elizabeth R. Champney & Daniel W. Mielcarz & James C. Geoghegan & Dennis R. Burton & Raiees Andrabi & Jesse D, 2023. "Evolution of antibody immunity following Omicron BA.1 breakthrough infection," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Noemia S. Lima & Maryam Musayev & Timothy S. Johnston & Danielle A. Wagner & Amy R. Henry & Lingshu Wang & Eun Sung Yang & Yi Zhang & Kevina Birungi & Walker P. Black & Sijy O’Dell & Stephen D. Schmid, 2022. "Primary exposure to SARS-CoV-2 variants elicits convergent epitope specificities, immunoglobulin V gene usage and public B cell clones," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    9. Mathieu Claireaux & Tom G. Caniels & Marlon Gast & Julianna Han & Denise Guerra & Gius Kerster & Barbera D. C. Schaik & Aldo Jongejan & Angela I. Schriek & Marloes Grobben & Philip J. M. Brouwer & Kar, 2022. "A public antibody class recognizes an S2 epitope exposed on open conformations of SARS-CoV-2 spike," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. Amrit Dhar & Kristian Davidsen & Frederick A Matsen IV & Vladimir N Minin, 2018. "Predicting B cell receptor substitution profiles using public repertoire data," PLOS Computational Biology, Public Library of Science, vol. 14(10), pages 1-24, October.
    11. Christoph Kreer & Cosimo Lupo & Meryem S. Ercanoglu & Lutz Gieselmann & Natanael Spisak & Jan Grossbach & Maike Schlotz & Philipp Schommers & Henning Gruell & Leona Dold & Andreas Beyer & Armita Nourm, 2023. "Probabilities of developing HIV-1 bNAb sequence features in uninfected and chronically infected individuals," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    12. Chaim A. Schramm & Damee Moon & Lowrey Peyton & Noemia S. Lima & Christian Wake & Kristin L. Boswell & Amy R. Henry & Farida Laboune & David Ambrozak & Samuel W. Darko & I-Ting Teng & Kathryn E. Fould, 2023. "Interaction dynamics between innate and adaptive immune cells responding to SARS-CoV-2 vaccination in non-human primates," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007977. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.