IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37083-x.html
   My bibliography  Save this article

Affinity maturation generates pathogenic antibodies with dual reactivity to DNase1L3 and dsDNA in systemic lupus erythematosus

Author

Listed:
  • Eduardo Gomez-Bañuelos

    (The Johns Hopkins University School of Medicine)

  • Yikai Yu

    (Huazhong University of Science and Technology)

  • Jessica Li

    (The Johns Hopkins University School of Medicine)

  • Kevin S. Cashman

    (Emory University)

  • Merlin Paz

    (The Johns Hopkins University School of Medicine)

  • Maria Isabel Trejo-Zambrano

    (The Johns Hopkins University School of Medicine)

  • Regina Bugrovsky

    (Emory University)

  • Youliang Wang

    (Emory University)

  • Asiya Seema Chida

    (Emory University)

  • Cheryl A. Sherman-Baust

    (National Institute on Aging)

  • Dylan P. Ferris

    (The Johns Hopkins University School of Medicine)

  • Daniel W. Goldman

    (The Johns Hopkins University School of Medicine)

  • Erika Darrah

    (The Johns Hopkins University School of Medicine)

  • Michelle Petri

    (The Johns Hopkins University School of Medicine)

  • Iñaki Sanz

    (Emory University)

  • Felipe Andrade

    (The Johns Hopkins University School of Medicine)

Abstract

Anti-dsDNA antibodies are pathogenically heterogeneous, implying distinct origins and antigenic properties. Unexpectedly, during the clinical and molecular characterization of autoantibodies to the endonuclease DNase1L3 in patients with systemic lupus erythematosus (SLE), we identified a subset of neutralizing anti-DNase1L3 antibodies previously catalogued as anti-dsDNA. Based on their variable heavy-chain (VH) gene usage, these antibodies can be divided in two groups. One group is encoded by the inherently autoreactive VH4-34 gene segment, derives from anti-DNase1L3 germline-encoded precursors, and gains cross-reactivity to dsDNA – and some additionally to cardiolipin – following somatic hypermutation. The second group, originally defined as nephritogenic anti-dsDNA antibodies, is encoded by diverse VH gene segments. Although affinity maturation results in dual reactivity to DNase1L3 and dsDNA, their binding efficiencies favor DNase1L3 as the primary antigen. Clinical, transcriptional and monoclonal antibody data support that cross-reactive anti-DNase1L3/dsDNA antibodies are more pathogenic than single reactive anti-dsDNA antibodies. These findings point to DNase1L3 as the primary target of a subset of antibodies classified as anti-dsDNA, shedding light on the origin and pathogenic heterogeneity of antibodies reactive to dsDNA in SLE.

Suggested Citation

  • Eduardo Gomez-Bañuelos & Yikai Yu & Jessica Li & Kevin S. Cashman & Merlin Paz & Maria Isabel Trejo-Zambrano & Regina Bugrovsky & Youliang Wang & Asiya Seema Chida & Cheryl A. Sherman-Baust & Dylan P., 2023. "Affinity maturation generates pathogenic antibodies with dual reactivity to DNase1L3 and dsDNA in systemic lupus erythematosus," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37083-x
    DOI: 10.1038/s41467-023-37083-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37083-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37083-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David A. Barbie & Pablo Tamayo & Jesse S. Boehm & So Young Kim & Susan E. Moody & Ian F. Dunn & Anna C. Schinzel & Peter Sandy & Etienne Meylan & Claudia Scholl & Stefan Fröhling & Edmond M. Chan & Ma, 2009. "Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1," Nature, Nature, vol. 462(7269), pages 108-112, November.
    2. Bryan Briney & Anne Inderbitzin & Collin Joyce & Dennis R. Burton, 2019. "Commonality despite exceptional diversity in the baseline human antibody repertoire," Nature, Nature, vol. 566(7744), pages 393-397, February.
    3. Cinque Soto & Robin G. Bombardi & Andre Branchizio & Nurgun Kose & Pranathi Matta & Alexander M. Sevy & Robert S. Sinkovits & Pavlo Gilchuk & Jessica A. Finn & James E. Crowe, 2019. "High frequency of shared clonotypes in human B cell receptor repertoires," Nature, Nature, vol. 566(7744), pages 398-402, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nima Nouri & Steven H Kleinstein, 2020. "Somatic hypermutation analysis for improved identification of B cell clonal families from next-generation sequencing data," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-22, June.
    2. Aleksandr Kovaltsuk & Matthew I J Raybould & Wing Ki Wong & Claire Marks & Sebastian Kelm & James Snowden & Johannes Trück & Charlotte M Deane, 2020. "Structural diversity of B-cell receptor repertoires along the B-cell differentiation axis in humans and mice," PLOS Computational Biology, Public Library of Science, vol. 16(2), pages 1-20, February.
    3. Oscar L. Rodriguez & Yana Safonova & Catherine A. Silver & Kaitlyn Shields & William S. Gibson & Justin T. Kos & David Tieri & Hanzhong Ke & Katherine J. L. Jackson & Scott D. Boyd & Melissa L. Smith , 2023. "Genetic variation in the immunoglobulin heavy chain locus shapes the human antibody repertoire," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    4. Qingnan Liang & Yuefan Huang & Shan He & Ken Chen, 2023. "Pathway centric analysis for single-cell RNA-seq and spatial transcriptomics data with GSDensity," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    5. Wanzun Lin & Li Chen & Haojiong Zhang & Xianxin Qiu & Qingting Huang & Fangzhu Wan & Ziyu Le & Shikai Geng & Anlan Zhang & Sufang Qiu & Long Chen & Lin Kong & Jiade J. Lu, 2023. "Tumor-intrinsic YTHDF1 drives immune evasion and resistance to immune checkpoint inhibitors via promoting MHC-I degradation," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    6. Su Yin Lim & Elena Shklovskaya & Jenny H. Lee & Bernadette Pedersen & Ashleigh Stewart & Zizhen Ming & Mal Irvine & Brindha Shivalingam & Robyn P. M. Saw & Alexander M. Menzies & Matteo S. Carlino & R, 2023. "The molecular and functional landscape of resistance to immune checkpoint blockade in melanoma," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    7. Christel F. A. Ramirez & Daniel Taranto & Masami Ando-Kuri & Marnix H. P. Groot & Efi Tsouri & Zhijie Huang & Daniel Groot & Roelof J. C. Kluin & Daan J. Kloosterman & Joanne Verheij & Jing Xu & Seren, 2024. "Cancer cell genetics shaping of the tumor microenvironment reveals myeloid cell-centric exploitable vulnerabilities in hepatocellular carcinoma," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    8. Yuanyuan Qu & Xiaohui Wu & Aihetaimujiang Anwaier & Jinwen Feng & Wenhao Xu & Xiaoru Pei & Yu Zhu & Yang Liu & Lin Bai & Guojian Yang & Xi Tian & Jiaqi Su & Guo-Hai Shi & Da-Long Cao & Fujiang Xu & Yu, 2022. "Proteogenomic characterization of MiT family translocation renal cell carcinoma," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    9. Julia Joung & Paul C. Kirchgatterer & Ankita Singh & Jang H. Cho & Suchita P. Nety & Rebecca C. Larson & Rhiannon K. Macrae & Rebecca Deasy & Yuen-Yi Tseng & Marcela V. Maus & Feng Zhang, 2022. "CRISPR activation screen identifies BCL-2 proteins and B3GNT2 as drivers of cancer resistance to T cell-mediated cytotoxicity," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    10. Kentaro Ohara & André Figueiredo Rendeiro & Bhavneet Bhinder & Kenneth Wha Eng & Hiranmayi Ravichandran & Duy Nguyen & David Pisapia & Aram Vosoughi & Evan Fernandez & Kyrillus S. Shohdy & Jyothi Mano, 2024. "The evolution of metastatic upper tract urothelial carcinoma through genomic-transcriptomic and single-cell protein markers analysis," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Chengzi I. Kaku & Tyler N. Starr & Panpan Zhou & Haley L. Dugan & Paul Khalifé & Ge Song & Elizabeth R. Champney & Daniel W. Mielcarz & James C. Geoghegan & Dennis R. Burton & Raiees Andrabi & Jesse D, 2023. "Evolution of antibody immunity following Omicron BA.1 breakthrough infection," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    12. Yin Li & Manling Jiang & Ling Aye & Li Luo & Yong Zhang & Fengkai Xu & Yongqi Wei & Dan Peng & Xiang He & Jie Gu & Xiaofang Yu & Guoping Li & Di Ge & Chunlai Lu, 2024. "UPP1 promotes lung adenocarcinoma progression through the induction of an immunosuppressive microenvironment," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    13. Xiaoping Su & Xiaofan Lu & Sehrish Khan Bazai & Linda Dainese & Arnauld Verschuur & Benoit Dumont & Roger Mouawad & Li Xu & Wenxuan Cheng & Fangrong Yan & Sabine Irtan & Véronique Lindner & Catherine , 2023. "Delineating the interplay between oncogenic pathways and immunity in anaplastic Wilms tumors," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Chaim A. Schramm & Damee Moon & Lowrey Peyton & Noemia S. Lima & Christian Wake & Kristin L. Boswell & Amy R. Henry & Farida Laboune & David Ambrozak & Samuel W. Darko & I-Ting Teng & Kathryn E. Fould, 2023. "Interaction dynamics between innate and adaptive immune cells responding to SARS-CoV-2 vaccination in non-human primates," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    15. Zhongchao Li & Jing Liu & Bo Zhang & Jinbo Yue & Xuetao Shi & Kai Cui & Zhaogang Liu & Zhibin Chang & Zhicheng Sun & Mingming Li & Yue Yang & Zhao Ma & Lei Li & Chengsheng Zhang & Pengfei Sun & Jingta, 2024. "Neoadjuvant tislelizumab plus stereotactic body radiotherapy and adjuvant tislelizumab in early-stage resectable hepatocellular carcinoma: the Notable-HCC phase 1b trial," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    16. Prateek Kumar & Annie M. Goettemoeller & Claudia Espinosa-Garcia & Brendan R. Tobin & Ali Tfaily & Ruth S. Nelson & Aditya Natu & Eric B. Dammer & Juliet V. Santiago & Sneha Malepati & Lihong Cheng & , 2024. "Native-state proteomics of Parvalbumin interneurons identifies unique molecular signatures and vulnerabilities to early Alzheimer’s pathology," Nature Communications, Nature, vol. 15(1), pages 1-26, December.
    17. Yue Wang & Dhamotharan Pattarayan & Haozhe Huang & Yueshan Zhao & Sihan Li & Yifei Wang & Min Zhang & Song Li & Da Yang, 2024. "Systematic investigation of chemo-immunotherapy synergism to shift anti-PD-1 resistance in cancer," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    18. Yan Li & Chen Xu & Bing Wang & Fujiang Xu & Fahan Ma & Yuanyuan Qu & Dongxian Jiang & Kai Li & Jinwen Feng & Sha Tian & Xiaohui Wu & Yunzhi Wang & Yang Liu & Zhaoyu Qin & Yalan Liu & Jing Qin & Qi Son, 2022. "Proteomic characterization of gastric cancer response to chemotherapy and targeted therapy reveals potential therapeutic strategies," Nature Communications, Nature, vol. 13(1), pages 1-26, December.
    19. Davide Bernareggi & Qi Xie & Briana C. Prager & Jiyoung Yun & Luisjesus S. Cruz & Timothy V. Pham & William Kim & Xiqing Lee & Michael Coffey & Cristina Zalfa & Pardis Azmoon & Huang Zhu & Pablo Tamay, 2022. "CHMP2A regulates tumor sensitivity to natural killer cell-mediated cytotoxicity," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    20. Jenniffer Linares & Anna Sallent-Aragay & Jordi Badia-Ramentol & Alba Recort-Bascuas & Ana Méndez & Noemí Manero-Rupérez & Daniele Lo Re & Elisa I. Rivas & Marc Guiu & Melissa Zwick & Mar Iglesias & C, 2023. "Long-term platinum-based drug accumulation in cancer-associated fibroblasts promotes colorectal cancer progression and resistance to therapy," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37083-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.