IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006623.html
   My bibliography  Save this article

Rosetta FunFolDes – A general framework for the computational design of functional proteins

Author

Listed:
  • Jaume Bonet
  • Sarah Wehrle
  • Karen Schriever
  • Che Yang
  • Anne Billet
  • Fabian Sesterhenn
  • Andreas Scheck
  • Freyr Sverrisson
  • Barbora Veselkova
  • Sabrina Vollers
  • Roxanne Lourman
  • Mélanie Villard
  • Stéphane Rosset
  • Thomas Krey
  • Bruno E Correia

Abstract

The robust computational design of functional proteins has the potential to deeply impact translational research and broaden our understanding of the determinants of protein function and stability. The low success rates of computational design protocols and the extensive in vitro optimization often required, highlight the challenge of designing proteins that perform essential biochemical functions, such as binding or catalysis. One of the most simplistic approaches for the design of function is to adopt functional motifs in naturally occurring proteins and transplant them to computationally designed proteins. The structural complexity of the functional motif largely determines how readily one can find host protein structures that are “designable”, meaning that are likely to present the functional motif in the desired conformation. One promising route to enhance the “designability” of protein structures is to allow backbone flexibility. Here, we present a computational approach that couples conformational folding with sequence design to embed functional motifs into heterologous proteins—Rosetta Functional Folding and Design (FunFolDes). We performed extensive computational benchmarks, where we observed that the enforcement of functional requirements resulted in designs distant from the global energetic minimum of the protein. An observation consistent with several experimental studies that have revealed function-stability tradeoffs. To test the design capabilities of FunFolDes we transplanted two viral epitopes into distant structural templates including one de novo “functionless” fold, which represent two typical challenges where the designability problem arises. The designed proteins were experimentally characterized showing high binding affinities to monoclonal antibodies, making them valuable candidates for vaccine design endeavors. Overall, we present an accessible strategy to repurpose old protein folds for new functions. This may lead to important improvements on the computational design of proteins, with structurally complex functional sites, that can perform elaborate biochemical functions related to binding and catalysis.Author summary: The ability to use computational tools to manipulate the structure and function of proteins has the potential to impact many facets of fundamental and translational science. Due to our limited understanding of the principles that govern protein function and structure, the computational design of functional proteins remains challenging. We developed a computational protocol (Rosetta FunFolDes) to facilitate the insertion of functional motifs into heterologous proteins. We performed extensive in silico benchmarks, and found that when the design of function is required the global energy minima may not be the optimal solution, in line with previously reported experimental studies. Further, we used FunFolDes to design two novel functional proteins, displaying two viral epitopes that can be of interest for vaccine development. The designed proteins were experimentally characterized, showing that functionalization was successfully achieved. These results highlight the capability of FunFolDes to address common challenges on the design of functional proteins. In particular, the reduced structural compatibility between functional sites and host scaffolds, effectively enabling the repurposing of old protein folds for new functions. Overall, FunFolDes provides new means to accomplish the challenging task of functionalizing computationally designed proteins.

Suggested Citation

  • Jaume Bonet & Sarah Wehrle & Karen Schriever & Che Yang & Anne Billet & Fabian Sesterhenn & Andreas Scheck & Freyr Sverrisson & Barbora Veselkova & Sabrina Vollers & Roxanne Lourman & Mélanie Villard , 2018. "Rosetta FunFolDes – A general framework for the computational design of functional proteins," PLOS Computational Biology, Public Library of Science, vol. 14(11), pages 1-30, November.
  • Handle: RePEc:plo:pcbi00:1006623
    DOI: 10.1371/journal.pcbi.1006623
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006623
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006623&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006623?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sarel J Fleishman & Andrew Leaver-Fay & Jacob E Corn & Eva-Maria Strauch & Sagar D Khare & Nobuyasu Koga & Justin Ashworth & Paul Murphy & Florian Richter & Gordon Lemmon & Jens Meiler & David Baker, 2011. "RosettaScripts: A Scripting Language Interface to the Rosetta Macromolecular Modeling Suite," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-10, June.
    2. Laura L. Cross & Rupesh Paudyal & Yasuko Kamisugi & Alan Berry & Andrew C. Cuming & Alison Baker & Stuart L. Warriner, 2017. "Towards designer organelles by subverting the peroxisomal import pathway," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    3. Sean R Eddy, 2011. "Accelerated Profile HMM Searches," PLOS Computational Biology, Public Library of Science, vol. 7(10), pages 1-16, October.
    4. Robert P. King, 2012. "The Science of Design," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(2), pages 275-284.
    5. Nobuyasu Koga & Rie Tatsumi-Koga & Gaohua Liu & Rong Xiao & Thomas B. Acton & Gaetano T. Montelione & David Baker, 2012. "Principles for designing ideal protein structures," Nature, Nature, vol. 491(7423), pages 222-227, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabian Sesterhenn & Che Yang & Jaume Bonet & Johannes T. Cramer & Xiaolin Wen & Yimeng Wang & Chi I. Chiang & Luciano Andres Abriata & Iga Kucharska & Giacomo Castoro & Sabrina S. Vollers & Marie Gall, 2020. "De novo protein design enables the precise induction of RSV-neutralizing antibodies," Post-Print hal-02677103, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas W. Linsky & Kyle Noble & Autumn R. Tobin & Rachel Crow & Lauren Carter & Jeffrey L. Urbauer & David Baker & Eva-Maria Strauch, 2022. "Sampling of structure and sequence space of small protein folds," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Jorge Roel-Touris & Marta Nadal & Enrique Marcos, 2023. "Single-chain dimers from de novo immunoglobulins as robust scaffolds for multiple binding loops," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Tamuka M. Chidyausiku & Soraia R. Mendes & Jason C. Klima & Marta Nadal & Ulrich Eckhard & Jorge Roel-Touris & Scott Houliston & Tibisay Guevara & Hugh K. Haddox & Adam Moyer & Cheryl H. Arrowsmith & , 2022. "De novo design of immunoglobulin-like domains," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Rebecca F Alford & Andrew Leaver-Fay & Lynda Gonzales & Erin L Dolan & Jeffrey J Gray, 2017. "A cyber-linked undergraduate research experience in computational biomolecular structure prediction and design," PLOS Computational Biology, Public Library of Science, vol. 13(12), pages 1-13, December.
    5. Daniel Ellis & Julia Lederhofer & Oliver J. Acton & Yaroslav Tsybovsky & Sally Kephart & Christina Yap & Rebecca A. Gillespie & Adrian Creanga & Audrey Olshefsky & Tyler Stephens & Deleah Pettie & Mic, 2022. "Structure-based design of stabilized recombinant influenza neuraminidase tetramers," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    6. Damiano Piovesan & Andras Hatos & Giovanni Minervini & Federica Quaglia & Alexander Miguel Monzon & Silvio C E Tosatto, 2020. "Assessing predictors for new post translational modification sites: A case study on hydroxylation," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-15, June.
    7. Marc Corrales & Pol Cuscó & Dinara R Usmanova & Heng-Chang Chen & Natalya S Bogatyreva & Guillaume J Filion & Dmitry N Ivankov, 2015. "Machine Learning: How Much Does It Tell about Protein Folding Rates?," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-12, November.
    8. Balázs Szalkai & Ildikó Scheer & Kinga Nagy & Beáta G Vértessy & Vince Grolmusz, 2014. "The Metagenomic Telescope," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-9, July.
    9. Ngaam J Cheung & Wookyung Yu, 2018. "De novo protein structure prediction using ultra-fast molecular dynamics simulation," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-17, November.
    10. Alexander M Sevy & Tim M Jacobs & James E Crowe Jr. & Jens Meiler, 2015. "Design of Protein Multi-specificity Using an Independent Sequence Search Reduces the Barrier to Low Energy Sequences," PLOS Computational Biology, Public Library of Science, vol. 11(7), pages 1-23, July.
    11. Bilig Sod & Lei Xu & Yajiao Liu & Fei He & Yanchao Xu & Mingna Li & Tianhui Yang & Ting Gao & Junmei Kang & Qingchuan Yang & Ruicai Long, 2023. "Genome-Wide Identification and Expression Analysis of the CesA/Csl Gene Superfamily in Alfalfa ( Medicago sativa L.)," Agriculture, MDPI, vol. 13(9), pages 1-14, August.
    12. Alejandro Ochoa & John D Storey & Manuel Llinás & Mona Singh, 2015. "Beyond the E-Value: Stratified Statistics for Protein Domain Prediction," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-21, November.
    13. Marco Orlando & Patrick C F Buchholz & Marina Lotti & Jürgen Pleiss, 2021. "The GH19 Engineering Database: Sequence diversity, substrate scope, and evolution in glycoside hydrolase family 19," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-30, October.
    14. Ezequiel A Galpern & María I Freiberger & Diego U Ferreiro, 2020. "Large Ankyrin repeat proteins are formed with similar and energetically favorable units," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-16, June.
    15. Timothy Capon & Michael Harris & Andrew Reeson, 2013. "The Design of Markets for Soil Carbon Sequestration," Economic Papers, The Economic Society of Australia, vol. 32(2), pages 161-173, June.
    16. Jonathan Yaacov Weinstein & Carlos Martí-Gómez & Rosalie Lipsh-Sokolik & Shlomo Yakir Hoch & Demian Liebermann & Reinat Nevo & Haim Weissman & Ekaterina Petrovich-Kopitman & David Margulies & Dmitry I, 2023. "Designed active-site library reveals thousands of functional GFP variants," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    17. Jared Adolf-Bryfogle & Oleks Kalyuzhniy & Michael Kubitz & Brian D Weitzner & Xiaozhen Hu & Yumiko Adachi & William R Schief & Roland L Dunbrack Jr., 2018. "RosettaAntibodyDesign (RAbD): A general framework for computational antibody design," PLOS Computational Biology, Public Library of Science, vol. 14(4), pages 1-38, April.
    18. Gerry Q Tonkin-Hill & Leily Trianty & Rintis Noviyanti & Hanh H T Nguyen & Boni F Sebayang & Daniel A Lampah & Jutta Marfurt & Simon A Cobbold & Janavi S Rambhatla & Malcolm J McConville & Stephen J R, 2018. "The Plasmodium falciparum transcriptome in severe malaria reveals altered expression of genes involved in important processes including surface antigen–encoding var genes," PLOS Biology, Public Library of Science, vol. 16(3), pages 1-40, March.
    19. Vishruth Mullapudi & Jaime Vaquer-Alicea & Vaibhav Bommareddy & Anthony R. Vega & Bryan D. Ryder & Charles L. White & Marc. I. Diamond & Lukasz A. Joachimiak, 2023. "Network of hotspot interactions cluster tau amyloid folds," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    20. Atul Kumar Upadhyay & Ramanathan Sowdhamini, 2016. "Genome-Wide Prediction and Analysis of 3D-Domain Swapped Proteins in the Human Genome from Sequence Information," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-20, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006623. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.