IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1007611.html
   My bibliography  Save this article

Self-organization in brain tumors: How cell morphology and cell density influence glioma pattern formation

Author

Listed:
  • Sara Jamous
  • Andrea Comba
  • Pedro R Lowenstein
  • Sebastien Motsch

Abstract

Modeling cancer cells is essential to better understand the dynamic nature of brain tumors and glioma cells, including their invasion of normal brain. Our goal is to study how the morphology of the glioma cell influences the formation of patterns of collective behavior such as flocks (cells moving in the same direction) or streams (cells moving in opposite direction) referred to as oncostream. We have observed experimentally that the presence of oncostreams correlates with tumor progression. We propose an original agent-based model that considers each cell as an ellipsoid. We show that stretching cells from round to ellipsoid increases stream formation. A systematic numerical investigation of the model was implemented in R 2. We deduce a phase diagram identifying key regimes for the dynamics (e.g. formation of flocks, streams, scattering). Moreover, we study the effect of cellular density and show that, in contrast to classical models of flocking, increasing cellular density reduces the formation of flocks. We observe similar patterns in R 3 with the noticeable difference that stream formation is more ubiquitous compared to flock formation.Author summary: Self-organization is the formation of large-scale multicellular patterns that result exclusively from the interactions amongst constituent single cells. To establish the existence of self-organization in brain tumors we used agent-based modeling based on data extracted from static and dynamic genetically engineered mouse glioma models. Implementation of our model in R 2 identifies the dynamics that lead to formation of flocks (cells moving in a single direction), streams (cells moving in two directions), and cells moving as swarms or scattering. Increasing cellular density reduced formation of flocks and increased the formation of streams both in R 2 and in R 3. These results demonstrate the detailed mechanism leading to self-organization in brain tumors. As increasing density of oncostreams correlates with tumor malignancy, we establish a pathophysiological link between self-organization of glioma tumors and glioma malignancy. We propose the dismantling of oncostreams as a new therapeutic approach to the treatment of brain tumors.

Suggested Citation

  • Sara Jamous & Andrea Comba & Pedro R Lowenstein & Sebastien Motsch, 2020. "Self-organization in brain tumors: How cell morphology and cell density influence glioma pattern formation," PLOS Computational Biology, Public Library of Science, vol. 16(5), pages 1-22, May.
  • Handle: RePEc:plo:pcbi00:1007611
    DOI: 10.1371/journal.pcbi.1007611
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007611
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007611&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1007611?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mehdi Moussaïd & Elsa G Guillot & Mathieu Moreau & Jérôme Fehrenbach & Olivier Chabiron & Samuel Lemercier & Julien Pettré & Cécile Appert-Rolland & Pierre Degond & Guy Theraulaz, 2012. "Traffic Instabilities in Self-Organized Pedestrian Crowds," PLOS Computational Biology, Public Library of Science, vol. 8(3), pages 1-10, March.
    2. Iain D. Couzin & Jens Krause & Nigel R. Franks & Simon A. Levin, 2005. "Effective leadership and decision-making in animal groups on the move," Nature, Nature, vol. 433(7025), pages 513-516, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simon Levin & Anastasios Xepapadeas, 2021. "On the Coevolution of Economic and Ecological Systems," Annual Review of Resource Economics, Annual Reviews, vol. 13(1), pages 355-377, October.
    2. Becco, Ch. & Vandewalle, N. & Delcourt, J. & Poncin, P., 2006. "Experimental evidences of a structural and dynamical transition in fish school," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 487-493.
    3. Long-Hai Wang & Alexander Ulrich Ernst & Duo An & Ashim Kumar Datta & Boris Epel & Mrignayani Kotecha & Minglin Ma, 2021. "A bioinspired scaffold for rapid oxygenation of cell encapsulation systems," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    4. Mohammad Komareji & Roland Bouffanais, 2013. "Resilience and Controllability of Dynamic Collective Behaviors," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-15, December.
    5. Richard P Mann, 2011. "Bayesian Inference for Identifying Interaction Rules in Moving Animal Groups," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-10, August.
    6. Ma, Jian & Song, Wei-guo & Zhang, Jun & Lo, Siu-ming & Liao, Guang-xuan, 2010. "k-Nearest-Neighbor interaction induced self-organized pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(10), pages 2101-2117.
    7. Andrew Hoegh & Frank T. Manen & Mark Haroldson, 2021. "Agent-Based Models for Collective Animal Movement: Proximity-Induced State Switching," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(4), pages 560-579, December.
    8. Tamás Nepusz & Tamás Vicsek, 2013. "Hierarchical Self-Organization of Non-Cooperating Individuals," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-9, December.
    9. Amos Korman & Efrat Greenwald & Ofer Feinerman, 2014. "Confidence Sharing: An Economic Strategy for Efficient Information Flows in Animal Groups," PLOS Computational Biology, Public Library of Science, vol. 10(10), pages 1-10, October.
    10. Roy Harpaz & Minh Nguyet Nguyen & Armin Bahl & Florian Engert, 2021. "Precise visuomotor transformations underlying collective behavior in larval zebrafish," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    11. Li, Qing & Zhang, Lingwei & Jia, Yongnan & Lu, Tianzhao & Chen, Xiaojie, 2022. "Modeling, analysis, and optimization of three-dimensional restricted visual field metric-free swarms," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    12. Lian, Liping & Song, Weiguo & Yuen, Kwok Kit Richard & Telesca, Luciano, 2018. "Investigating the time evolution of some parameters describing inflow processes of pedestrians in a room," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 77-88.
    13. Mathew Titus & George Hagstrom & James R Watson, 2021. "Unsupervised manifold learning of collective behavior," PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-20, February.
    14. Sophie Lardy & Daniel Fortin & Olivier Pays, 2016. "Increased Exploration Capacity Promotes Group Fission in Gregarious Foraging Herbivores," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-14, December.
    15. Fan, Kangqi & Pedrycz, Witold, 2016. "Opinion evolution influenced by informed agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 431-441.
    16. De Rosis, Alessandro, 2014. "Hydrodynamic effects on a predator approaching a group of preys," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 329-339.
    17. Shao, Zhi-Gang & Yang, Yan-Yan, 2015. "Effective strategies of collective evacuation from an enclosed space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 34-39.
    18. Panpan Yang & Maode Yan & Jiacheng Song & Ye Tang, 2019. "Self-Organized Fission-Fusion Control Algorithm for Flocking Systems Based on Intermittent Selective Interaction," Complexity, Hindawi, vol. 2019, pages 1-12, February.
    19. Saberi, Meead & Aghabayk, Kayvan & Sobhani, Amir, 2015. "Spatial fluctuations of pedestrian velocities in bidirectional streams: Exploring the effects of self-organization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 120-128.
    20. Li, Chenyang & Yang, Yonghui & Jiang, Guanjie & Chen, Xue-Bo, 2024. "Flocking for leader ability effect and formation obstacle avoidance of multi-agents based on different potential functions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.