IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1007511.html
   My bibliography  Save this article

VAMPr: VAriant Mapping and Prediction of antibiotic resistance via explainable features and machine learning

Author

Listed:
  • Jiwoong Kim
  • David E Greenberg
  • Reed Pifer
  • Shuang Jiang
  • Guanghua Xiao
  • Samuel A Shelburne
  • Andrew Koh
  • Yang Xie
  • Xiaowei Zhan

Abstract

Antimicrobial resistance (AMR) is an increasing threat to public health. Current methods of determining AMR rely on inefficient phenotypic approaches, and there remains incomplete understanding of AMR mechanisms for many pathogen-antimicrobial combinations. Given the rapid, ongoing increase in availability of high-density genomic data for a diverse array of bacteria, development of algorithms that could utilize genomic information to predict phenotype could both be useful clinically and assist with discovery of heretofore unrecognized AMR pathways. To facilitate understanding of the connections between DNA variation and phenotypic AMR, we developed a new bioinformatics tool, variant mapping and prediction of antibiotic resistance (VAMPr), to (1) derive gene ortholog-based sequence features for protein variants; (2) interrogate these explainable gene-level variants for their known or novel associations with AMR; and (3) build accurate models to predict AMR based on whole genome sequencing data. We curated the publicly available sequencing data for 3,393 bacterial isolates from 9 species that contained AMR phenotypes for 29 antibiotics. We detected 14,615 variant genotypes and built 93 association and prediction models. The association models confirmed known genetic antibiotic resistance mechanisms, such as blaKPC and carbapenem resistance consistent with the accurate nature of our approach. The prediction models achieved high accuracies (mean accuracy of 91.1% for all antibiotic-pathogen combinations) internally through nested cross validation and were also validated using external clinical datasets. The VAMPr variant detection method, association and prediction models will be valuable tools for AMR research for basic scientists with potential for clinical applicability.Author summary: Antimicrobial resistance (AMR) is a global health threat. The current method to determine AMR is inefficient and complete understanding of the mechanisms of AMR is lacking. With the increased feasibility of sequencing bacterial genomes, it is now easier, faster and cheaper to have genomic insights into AMR. In this manuscript, we propose a novel bioinformatic tool for variant mapping and prediction of antibiotic resistance (VAMPr). We curated 3,393 bacterial genomes from 9 bacterial species that contained AMR phenotypes for 29 antibiotics. We used protein orthology and detected 14,615 variants. Combined with AMR phenotypes, we built 93 association and prediction models. The association model confirms known genetic AMR mechanisms, and the prediction models achieved high accuracies. Together, our work will be valuable for AMR research for basic scientists with the potential for clinical applicability.

Suggested Citation

  • Jiwoong Kim & David E Greenberg & Reed Pifer & Shuang Jiang & Guanghua Xiao & Samuel A Shelburne & Andrew Koh & Yang Xie & Xiaowei Zhan, 2020. "VAMPr: VAriant Mapping and Prediction of antibiotic resistance via explainable features and machine learning," PLOS Computational Biology, Public Library of Science, vol. 16(1), pages 1-17, January.
  • Handle: RePEc:plo:pcbi00:1007511
    DOI: 10.1371/journal.pcbi.1007511
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007511
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007511&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1007511?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    2. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jason C. Hyun & Jonathan M. Monk & Richard Szubin & Ying Hefner & Bernhard O. Palsson, 2023. "Global pathogenomic analysis identifies known and candidate genetic antimicrobial resistance determinants in twelve species," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    3. Hou-Tai Chang & Ping-Huai Wang & Wei-Fang Chen & Chen-Ju Lin, 2022. "Risk Assessment of Early Lung Cancer with LDCT and Health Examinations," IJERPH, MDPI, vol. 19(8), pages 1-12, April.
    4. Wang, Qiao & Zhou, Wei & Cheng, Yonggang & Ma, Gang & Chang, Xiaolin & Miao, Yu & Chen, E, 2018. "Regularized moving least-square method and regularized improved interpolating moving least-square method with nonsingular moment matrices," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 120-145.
    5. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    6. Lucian Belascu & Alexandra Horobet & Georgiana Vrinceanu & Consuela Popescu, 2021. "Performance Dissimilarities in European Union Manufacturing: The Effect of Ownership and Technological Intensity," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    7. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    8. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2025. "Specification Choices in Quantile Regression for Empirical Macroeconomics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 40(1), pages 57-73, January.
    9. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    10. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    11. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    12. Enrico Bergamini & Georg Zachmann, 2020. "Exploring EU’s Regional Potential in Low-Carbon Technologies," Sustainability, MDPI, vol. 13(1), pages 1-28, December.
    13. Qianyun Li & Runmin Shi & Faming Liang, 2019. "Drug sensitivity prediction with high-dimensional mixture regression," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-18, February.
    14. Jung, Yoon Mo & Whang, Joyce Jiyoung & Yun, Sangwoon, 2020. "Sparse probabilistic K-means," Applied Mathematics and Computation, Elsevier, vol. 382(C).
    15. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    16. Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(3), pages 695-746, August.
    17. Joseph, Andreas & Potjagailo, Galina & Chakraborty, Chiranjit & Kapetanios, George, 2024. "Forecasting UK inflation bottom up," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1521-1538.
    18. Soave, David & Lawless, Jerald F., 2023. "Regularized regression for two phase failure time studies," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    19. Moharil Janhavi & May Paul & Gaile Daniel P. & Blair Rachael Hageman, 2016. "Belief propagation in genotype-phenotype networks," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(1), pages 39-53, March.
    20. Won Hee Lee, 2023. "The Choice of Machine Learning Algorithms Impacts the Association between Brain-Predicted Age Difference and Cognitive Function," Mathematics, MDPI, vol. 11(5), pages 1-15, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.