IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1007510.html
   My bibliography  Save this article

CDSeq: A novel complete deconvolution method for dissecting heterogeneous samples using gene expression data

Author

Listed:
  • Kai Kang
  • Qian Meng
  • Igor Shats
  • David M Umbach
  • Melissa Li
  • Yuanyuan Li
  • Xiaoling Li
  • Leping Li

Abstract

Quantifying cell-type proportions and their corresponding gene expression profiles in tissue samples would enhance understanding of the contributions of individual cell types to the physiological states of the tissue. Current approaches that address tissue heterogeneity have drawbacks. Experimental techniques, such as fluorescence-activated cell sorting, and single cell RNA sequencing are expensive. Computational approaches that use expression data from heterogeneous samples are promising, but most of the current methods estimate either cell-type proportions or cell-type-specific expression profiles by requiring the other as input. Although such partial deconvolution methods have been successfully applied to tumor samples, the additional input required may be unavailable. We introduce a novel complete deconvolution method, CDSeq, that uses only RNA-Seq data from bulk tissue samples to simultaneously estimate both cell-type proportions and cell-type-specific expression profiles. Using several synthetic and real experimental datasets with known cell-type composition and cell-type-specific expression profiles, we compared CDSeq’s complete deconvolution performance with seven other established deconvolution methods. Complete deconvolution using CDSeq represents a substantial technical advance over partial deconvolution approaches and will be useful for studying cell mixtures in tissue samples. CDSeq is available at GitHub repository (MATLAB and Octave code): https://github.com/kkang7/CDSeq.Author summary: Understanding the cellular composition of bulk tissues is critical to investigate the underlying mechanisms of many biological processes. Single cell sequencing is a promising technique, however, it is expensive and the analysis of single cell data is non-trivial. Therefore, tissue samples are still routinely processed in bulk. To estimate cell-type composition using bulk gene expression data, computational deconvolution methods are needed. Many deconvolution methods have been proposed, however, they often estimate only cell type proportions using a reference cell type gene expression profile, which in many cases may not be available. We present a novel complete deconvolution method that uses only bulk gene expression data to simultaneously estimate cell-type-specific gene expression profiles and sample-specific cell-type proportions. We showed that, using multiple RNA-Seq and microarray datasets where the cell-type composition was previously known, our method could accurately determine the cell-type composition. By providing a method that requires a single input to determine both cell-type proportion and cell-type-specific expression profiles, we expect that our method will be beneficial to biologists and facilitate the research and identification of mechanisms underlying many biological processes.

Suggested Citation

  • Kai Kang & Qian Meng & Igor Shats & David M Umbach & Melissa Li & Yuanyuan Li & Xiaoling Li & Leping Li, 2019. "CDSeq: A novel complete deconvolution method for dissecting heterogeneous samples using gene expression data," PLOS Computational Biology, Public Library of Science, vol. 15(12), pages 1-18, December.
  • Handle: RePEc:plo:pcbi00:1007510
    DOI: 10.1371/journal.pcbi.1007510
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007510
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007510&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1007510?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xuran Wang & Jihwan Park & Katalin Susztak & Nancy R. Zhang & Mingyao Li, 2019. "Bulk tissue cell type deconvolution with multi-subject single-cell expression reference," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brendan F. Miller & Feiyang Huang & Lyla Atta & Arpan Sahoo & Jean Fan, 2022. "Reference-free cell type deconvolution of multi-cellular pixel-resolution spatially resolved transcriptomics data," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kobe Ridder & Huiwen Che & Kaat Leroy & Bernard Thienpont, 2024. "Benchmarking of methods for DNA methylome deconvolution," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Jakob Hartmann & Thomas Bajaj & Joy Otten & Claudia Klengel & Tim Ebert & Anne-Kathrin Gellner & Ellen Junglas & Kathrin Hafner & Elmira A. Anderzhanova & Fiona Tang & Galen Missig & Lindsay Rexrode &, 2024. "SKA2 regulated hyperactive secretory autophagy drives neuroinflammation-induced neurodegeneration," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    3. Bárbara Andrade Barbosa & Saskia D. Asten & Ji Won Oh & Arantza Farina-Sarasqueta & Joanne Verheij & Frederike Dijk & Hanneke W. M. Laarhoven & Bauke Ylstra & Juan J. Garcia Vallejo & Mark A. Wiel & Y, 2021. "Bayesian log-normal deconvolution for enhanced in silico microdissection of bulk gene expression data," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    4. Keyong Sun & Runda Xu & Fuhai Ma & Naixue Yang & Yang Li & Xiaofeng Sun & Peng Jin & Wenzhe Kang & Lemei Jia & Jianping Xiong & Haitao Hu & Yantao Tian & Xun Lan, 2022. "scRNA-seq of gastric tumor shows complex intercellular interaction with an alternative T cell exhaustion trajectory," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    5. Nelson Johansen & Hongru Hu & Gerald Quon, 2023. "Projecting RNA measurements onto single cell atlases to extract cell type-specific expression profiles using scProjection," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Jingtao Wang & Gregory J. Fonseca & Jun Ding, 2024. "scSemiProfiler: Advancing large-scale single-cell studies through semi-profiling with deep generative models and active learning," Nature Communications, Nature, vol. 15(1), pages 1-27, December.
    7. Raúl F. Pérez & Patricia Tezanos & Alfonso Peñarroya & Alejandro González-Ramón & Rocío G. Urdinguio & Javier Gancedo-Verdejo & Juan Ramón Tejedor & Pablo Santamarina-Ojeda & Juan José Alba-Linares & , 2024. "A multiomic atlas of the aging hippocampus reveals molecular changes in response to environmental enrichment," Nature Communications, Nature, vol. 15(1), pages 1-26, December.
    8. Chang Su & Zichun Xu & Xinning Shan & Biao Cai & Hongyu Zhao & Jingfei Zhang, 2023. "Cell-type-specific co-expression inference from single cell RNA-sequencing data," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Benjamin Villalard & Arjan Boltjes & Florie Reynaud & Olivier Imbaud & Karine Thoinet & Ilse Timmerman & Séverine Croze & Emy Theoulle & Gianluigi Atzeni & Joël Lachuer & Jan J. Molenaar & Godelieve A, 2024. "Neuroblastoma plasticity during metastatic progression stems from the dynamics of an early sympathetic transcriptomic trajectory," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    10. Seoyeon Lee & Mohammad Naimul Islam & Kaveh Boostanpour & Dvir Aran & Guangchun Jin & Stephanie Christenson & Michael A. Matthay & Walter L. Eckalbar & Daryle J. DePianto & Joseph R. Arron & Liam Mage, 2021. "Molecular programs of fibrotic change in aging human lung," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    11. Xiao Zhou & Zhen Cheng & Mingyu Dong & Qi Liu & Weiyang Yang & Min Liu & Junzhang Tian & Weibin Cheng, 2022. "Tumor fractions deciphered from circulating cell-free DNA methylation for cancer early diagnosis," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    12. Matteo D’Antonio & Jennifer P. Nguyen & Timothy D. Arthur & Hiroko Matsui & Agnieszka D’Antonio-Chronowska & Kelly A. Frazer, 2023. "Fine mapping spatiotemporal mechanisms of genetic variants underlying cardiac traits and disease," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    13. Brian D. Lehmann & Antonio Colaprico & Tiago C. Silva & Jianjiao Chen & Hanbing An & Yuguang Ban & Hanchen Huang & Lily Wang & Jamaal L. James & Justin M. Balko & Paula I. Gonzalez-Ericsson & Melinda , 2021. "Multi-omics analysis identifies therapeutic vulnerabilities in triple-negative breast cancer subtypes," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    14. Beibei Ru & Jinlin Huang & Yu Zhang & Kenneth Aldape & Peng Jiang, 2023. "Estimation of cell lineages in tumors from spatial transcriptomics data," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Michael S. Balzer & Tomohito Doke & Ya-Wen Yang & Daniel L. Aldridge & Hailong Hu & Hung Mai & Dhanunjay Mukhi & Ziyuan Ma & Rojesh Shrestha & Matthew B. Palmer & Christopher A. Hunter & Katalin Suszt, 2022. "Single-cell analysis highlights differences in druggable pathways underlying adaptive or fibrotic kidney regeneration," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    16. David R. Ghasemi & Konstantin Okonechnikov & Anne Rademacher & Stephan Tirier & Kendra K. Maass & Hanna Schumacher & Piyush Joshi & Maxwell P. Gold & Julia Sundheimer & Britta Statz & Ahmet S. Rifaiog, 2024. "Compartments in medulloblastoma with extensive nodularity are connected through differentiation along the granular precursor lineage," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    17. Yanshuo Chen & Yixuan Wang & Yuelong Chen & Yuqi Cheng & Yumeng Wei & Yunxiang Li & Jiuming Wang & Yingying Wei & Ting-Fung Chan & Yu Li, 2022. "Deep autoencoder for interpretable tissue-adaptive deconvolution and cell-type-specific gene analysis," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    18. Zhenzhen Xun & Xinyu Ding & Yao Zhang & Benyan Zhang & Shujing Lai & Duowu Zou & Junke Zheng & Guoqiang Chen & Bing Su & Leng Han & Youqiong Ye, 2023. "Reconstruction of the tumor spatial microenvironment along the malignant-boundary-nonmalignant axis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    19. Maja Olecka & Alena Bömmel & Lena Best & Madlen Haase & Silke Foerste & Konstantin Riege & Thomas Dost & Stefano Flor & Otto W. Witte & Sören Franzenburg & Marco Groth & Björn Eyss & Christoph Kaleta , 2024. "Nonlinear DNA methylation trajectories in aging male mice," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    20. Bryce Rowland & Ruth Huh & Zoey Hou & Cheynna Crowley & Jia Wen & Yin Shen & Ming Hu & Paola Giusti-Rodríguez & Patrick F Sullivan & Yun Li, 2022. "THUNDER: A reference-free deconvolution method to infer cell type proportions from bulk Hi-C data," PLOS Genetics, Public Library of Science, vol. 18(3), pages 1-18, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.