IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26328-2.html
   My bibliography  Save this article

Bayesian log-normal deconvolution for enhanced in silico microdissection of bulk gene expression data

Author

Listed:
  • Bárbara Andrade Barbosa

    (Amsterdam UMC, Vrije Universiteit Amsterdam)

  • Saskia D. Asten

    (Amsterdam UMC, Vrije Universiteit Amsterdam
    Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Infection and Immunity Institute)

  • Ji Won Oh

    (Kyungpook National University
    Kyungpook National University Hospital)

  • Arantza Farina-Sarasqueta

    (Amsterdam UMC, University of Amsterdam)

  • Joanne Verheij

    (Amsterdam UMC, University of Amsterdam)

  • Frederike Dijk

    (Amsterdam UMC, University of Amsterdam)

  • Hanneke W. M. Laarhoven

    (Amsterdam UMC, University of Amsterdam)

  • Bauke Ylstra

    (Amsterdam UMC, Vrije Universiteit Amsterdam)

  • Juan J. Garcia Vallejo

    (Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Infection and Immunity Institute)

  • Mark A. Wiel

    (Amsterdam UMC, Vrije Universiteit Amsterdam)

  • Yongsoo Kim

    (Amsterdam UMC, Vrije Universiteit Amsterdam)

Abstract

Deconvolution of bulk gene expression profiles into the cellular components is pivotal to portraying tissue’s complex cellular make-up, such as the tumor microenvironment. However, the inherently variable nature of gene expression requires a comprehensive statistical model and reliable prior knowledge of individual cell types that can be obtained from single-cell RNA sequencing. We introduce BLADE (Bayesian Log-normAl Deconvolution), a unified Bayesian framework to estimate both cellular composition and gene expression profiles for each cell type. Unlike previous comprehensive statistical approaches, BLADE can handle > 20 types of cells due to the efficient variational inference. Throughout an intensive evaluation with > 700 simulated and real datasets, BLADE demonstrated enhanced robustness against gene expression variability and better completeness than conventional methods, in particular, to reconstruct gene expression profiles of each cell type. In summary, BLADE is a powerful tool to unravel heterogeneous cellular activity in complex biological systems from standard bulk gene expression data.

Suggested Citation

  • Bárbara Andrade Barbosa & Saskia D. Asten & Ji Won Oh & Arantza Farina-Sarasqueta & Joanne Verheij & Frederike Dijk & Hanneke W. M. Laarhoven & Bauke Ylstra & Juan J. Garcia Vallejo & Mark A. Wiel & Y, 2021. "Bayesian log-normal deconvolution for enhanced in silico microdissection of bulk gene expression data," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26328-2
    DOI: 10.1038/s41467-021-26328-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26328-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26328-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yoshimasa Aoto & Tsuyoshi Hachiya & Kazuhiro Okumura & Sumitaka Hase & Kengo Sato & Yuichi Wakabayashi & Yasubumi Sakakibara, 2017. "DEclust: A statistical approach for obtaining differential expression profiles of multiple conditions," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-15, November.
    2. Armin Rauschenberger & Iuliana Ciocănea-Teodorescu & Marianne A. Jonker & Renée X. Menezes & Mark A. Wiel, 2020. "Sparse classification with paired covariates," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(3), pages 571-588, September.
    3. Xuran Wang & Jihwan Park & Katalin Susztak & Nancy R. Zhang & Mingyao Li, 2019. "Bulk tissue cell type deconvolution with multi-subject single-cell expression reference," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    4. Zhengtao Xiao & Ziwei Dai & Jason W. Locasale, 2019. "Metabolic landscape of the tumor microenvironment at single cell resolution," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    5. Peter Bailey & David K. Chang & Katia Nones & Amber L. Johns & Ann-Marie Patch & Marie-Claude Gingras & David K. Miller & Angelika N. Christ & Tim J. C. Bruxner & Michael C. Quinn & Craig Nourse & L. , 2016. "Genomic analyses identify molecular subtypes of pancreatic cancer," Nature, Nature, vol. 531(7592), pages 47-52, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanshuo Chen & Yixuan Wang & Yuelong Chen & Yuqi Cheng & Yumeng Wei & Yunxiang Li & Jiuming Wang & Yingying Wei & Ting-Fung Chan & Yu Li, 2022. "Deep autoencoder for interpretable tissue-adaptive deconvolution and cell-type-specific gene analysis," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kobe Ridder & Huiwen Che & Kaat Leroy & Bernard Thienpont, 2024. "Benchmarking of methods for DNA methylome deconvolution," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Jakob Hartmann & Thomas Bajaj & Joy Otten & Claudia Klengel & Tim Ebert & Anne-Kathrin Gellner & Ellen Junglas & Kathrin Hafner & Elmira A. Anderzhanova & Fiona Tang & Galen Missig & Lindsay Rexrode &, 2024. "SKA2 regulated hyperactive secretory autophagy drives neuroinflammation-induced neurodegeneration," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    3. Keyong Sun & Runda Xu & Fuhai Ma & Naixue Yang & Yang Li & Xiaofeng Sun & Peng Jin & Wenzhe Kang & Lemei Jia & Jianping Xiong & Haitao Hu & Yantao Tian & Xun Lan, 2022. "scRNA-seq of gastric tumor shows complex intercellular interaction with an alternative T cell exhaustion trajectory," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    4. Nelson Johansen & Hongru Hu & Gerald Quon, 2023. "Projecting RNA measurements onto single cell atlases to extract cell type-specific expression profiles using scProjection," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Jingtao Wang & Gregory J. Fonseca & Jun Ding, 2024. "scSemiProfiler: Advancing large-scale single-cell studies through semi-profiling with deep generative models and active learning," Nature Communications, Nature, vol. 15(1), pages 1-27, December.
    6. Raúl F. Pérez & Patricia Tezanos & Alfonso Peñarroya & Alejandro González-Ramón & Rocío G. Urdinguio & Javier Gancedo-Verdejo & Juan Ramón Tejedor & Pablo Santamarina-Ojeda & Juan José Alba-Linares & , 2024. "A multiomic atlas of the aging hippocampus reveals molecular changes in response to environmental enrichment," Nature Communications, Nature, vol. 15(1), pages 1-26, December.
    7. Sebastien Martinez & Shifei Wu & Michael Geuenich & Ahmad Malik & Ramona Weber & Tristan Woo & Amy Zhang & Gun Ho Jang & Dzana Dervovic & Khalid N. Al-Zahrani & Ricky Tsai & Nassima Fodil & Philippe G, 2024. "In vivo CRISPR screens reveal SCAF1 and USP15 as drivers of pancreatic cancer," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Peter Bailey & Rachel A. Ridgway & Patrizia Cammareri & Mairi Treanor-Taylor & Ulla-Maja Bailey & Christina Schoenherr & Max Bone & Daniel Schreyer & Karin Purdie & Jason Thomson & William Rickaby & R, 2023. "Driver gene combinations dictate cutaneous squamous cell carcinoma disease continuum progression," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Handong Sun & Lishen Zhang & Zhonglin Wang & Danling Gu & Mengyan Zhu & Yun Cai & Lu Li & Jiaqi Tang & Bin Huang & Bakwatanisa Bosco & Ning Li & Lingxiang Wu & Wei Wu & Liangyu Li & Yuan Liang & Lin L, 2023. "Single-cell transcriptome analysis indicates fatty acid metabolism-mediated metastasis and immunosuppression in male breast cancer," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    10. Chang Su & Zichun Xu & Xinning Shan & Biao Cai & Hongyu Zhao & Jingfei Zhang, 2023. "Cell-type-specific co-expression inference from single cell RNA-sequencing data," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Teklab Gebregiworgis & Yoshihito Kano & Jonathan St-Germain & Nikolina Radulovich & Molly L. Udaskin & Ahmet Mentes & Richard Huang & Betty P. K. Poon & Wenguang He & Ivette Valencia-Sama & Claire M. , 2021. "The Q61H mutation decouples KRAS from upstream regulation and renders cancer cells resistant to SHP2 inhibitors," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    12. Seoyeon Lee & Mohammad Naimul Islam & Kaveh Boostanpour & Dvir Aran & Guangchun Jin & Stephanie Christenson & Michael A. Matthay & Walter L. Eckalbar & Daryle J. DePianto & Joseph R. Arron & Liam Mage, 2021. "Molecular programs of fibrotic change in aging human lung," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    13. James T. Topham & Erica S. Tsang & Joanna M. Karasinska & Andrew Metcalfe & Hassan Ali & Steve E. Kalloger & Veronika Csizmok & Laura M. Williamson & Emma Titmuss & Karina Nielsen & Gian Luca Negri & , 2022. "Integrative analysis of KRAS wildtype metastatic pancreatic ductal adenocarcinoma reveals mutation and expression-based similarities to cholangiocarcinoma," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    14. Shigekazu Murakami & Shannon M. White & Alec T. McIntosh & Chan D. K. Nguyen & Chunling Yi, 2023. "Spontaneously evolved progenitor niches escape Yap oncogene addiction in advanced pancreatic ductal adenocarcinomas," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    15. Jonathan J. Swietlik & Stefanie Bärthel & Chiara Falcomatà & Diana Fink & Ankit Sinha & Jingyuan Cheng & Stefan Ebner & Peter Landgraf & Daniela C. Dieterich & Henrik Daub & Dieter Saur & Felix Meissn, 2023. "Cell-selective proteomics segregates pancreatic cancer subtypes by extracellular proteins in tumors and circulation," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    16. Guohe Song & Yang Shi & Lu Meng & Jiaqiang Ma & Siyuan Huang & Juan Zhang & Yingcheng Wu & Jiaxin Li & Youpei Lin & Shuaixi Yang & Dongning Rao & Yifei Cheng & Jian Lin & Shuyi Ji & Yuming Liu & Shan , 2022. "Single-cell transcriptomic analysis suggests two molecularly distinct subtypes of intrahepatic cholangiocarcinoma," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    17. Gregor Werba & Daniel Weissinger & Emily A. Kawaler & Ende Zhao & Despoina Kalfakakou & Surajit Dhara & Lidong Wang & Heather B. Lim & Grace Oh & Xiaohong Jing & Nina Beri & Lauren Khanna & Tamas Gond, 2023. "Single-cell RNA sequencing reveals the effects of chemotherapy on human pancreatic adenocarcinoma and its tumor microenvironment," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    18. Kang Wang & Ioannis Zerdes & Henrik J. Johansson & Dhifaf Sarhan & Yizhe Sun & Dimitris C. Kanellis & Emmanouil G. Sifakis & Artur Mezheyeuski & Xingrong Liu & Niklas Loman & Ingrid Hedenfalk & Jonas , 2024. "Longitudinal molecular profiling elucidates immunometabolism dynamics in breast cancer," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    19. Xiao Zhou & Zhen Cheng & Mingyu Dong & Qi Liu & Weiyang Yang & Min Liu & Junzhang Tian & Weibin Cheng, 2022. "Tumor fractions deciphered from circulating cell-free DNA methylation for cancer early diagnosis," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    20. Matteo D’Antonio & Jennifer P. Nguyen & Timothy D. Arthur & Hiroko Matsui & Agnieszka D’Antonio-Chronowska & Kelly A. Frazer, 2023. "Fine mapping spatiotemporal mechanisms of genetic variants underlying cardiac traits and disease," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26328-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.