IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-55213-x.html
   My bibliography  Save this article

Alleviating batch effects in cell type deconvolution with SCCAF-D

Author

Listed:
  • Shuo Feng

    (Guangzhou Medical University
    University of Science and Technology of China)

  • Liangfeng Huang

    (Guangzhou Medical University
    Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine)

  • Anna Vathrakokoili Pournara

    (Wellcome Genome Campus)

  • Ziliang Huang

    (Guangzhou Medical University)

  • Xinlu Yang

    (Harbin Red Cross Central Hospital)

  • Yongjian Zhang

    (Harbin Medical University the Sixth Affiliated Hospital)

  • Alvis Brazma

    (Wellcome Genome Campus)

  • Ming Shi

    (Harbin Institute of Technology)

  • Irene Papatheodorou

    (Norwich Research Park
    Norwich Research Park)

  • Zhichao Miao

    (Guangzhou Medical University
    Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine
    Wellcome Genome Campus)

Abstract

Cell type deconvolution methods can impute cell proportions from bulk transcriptomics data, revealing changes in disease progression or organ development. But benchmarking studies often use simulated bulk data from the same source as the reference, which limits its application scenarios. This study examines batch effects in deconvolution and introduces SCCAF-D, a computational workflow that ensures a Pearson Correlation Coefficient above 0.75 across simulated and real bulk data for various tissue types. Applied to non-alcoholic fatty liver disease, SCCAF-D unveils meaningful insights into changes in cell proportions during disease progression.

Suggested Citation

  • Shuo Feng & Liangfeng Huang & Anna Vathrakokoili Pournara & Ziliang Huang & Xinlu Yang & Yongjian Zhang & Alvis Brazma & Ming Shi & Irene Papatheodorou & Zhichao Miao, 2024. "Alleviating batch effects in cell type deconvolution with SCCAF-D," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-55213-x
    DOI: 10.1038/s41467-024-55213-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55213-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55213-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kai Kang & Qian Meng & Igor Shats & David M Umbach & Melissa Li & Yuanyuan Li & Xiaoling Li & Leping Li, 2019. "CDSeq: A novel complete deconvolution method for dissecting heterogeneous samples using gene expression data," PLOS Computational Biology, Public Library of Science, vol. 15(12), pages 1-18, December.
    2. Sonya A. MacParland & Jeff C. Liu & Xue-Zhong Ma & Brendan T. Innes & Agata M. Bartczak & Blair K. Gage & Justin Manuel & Nicholas Khuu & Juan Echeverri & Ivan Linares & Rahul Gupta & Michael L. Cheng, 2018. "Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations," Nature Communications, Nature, vol. 9(1), pages 1-21, December.
    3. Orit Rozenblatt-Rosen & Michael J. T. Stubbington & Aviv Regev & Sarah A. Teichmann, 2017. "The Human Cell Atlas: from vision to reality," Nature, Nature, vol. 550(7677), pages 451-453, October.
    4. Kyle J. Travaglini & Ahmad N. Nabhan & Lolita Penland & Rahul Sinha & Astrid Gillich & Rene V. Sit & Stephen Chang & Stephanie D. Conley & Yasuo Mori & Jun Seita & Gerald J. Berry & Joseph B. Shrager , 2020. "A molecular cell atlas of the human lung from single-cell RNA sequencing," Nature, Nature, vol. 587(7835), pages 619-625, November.
    5. Francisco Avila Cobos & José Alquicira-Hernandez & Joseph E. Powell & Pieter Mestdagh & Katleen De Preter, 2020. "Benchmarking of cell type deconvolution pipelines for transcriptomics data," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    6. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    7. Daphne Tsoucas & Rui Dong & Haide Chen & Qian Zhu & Guoji Guo & Guo-Cheng Yuan, 2019. "Accurate estimation of cell-type composition from gene expression data," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    8. Xuran Wang & Jihwan Park & Katalin Susztak & Nancy R. Zhang & Mingyao Li, 2019. "Bulk tissue cell type deconvolution with multi-subject single-cell expression reference," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    9. Nadim Aizarani & Antonio Saviano & Sagar & Laurent Mailly & Sarah Durand & Josip S. Herman & Patrick Pessaux & Thomas F. Baumert & Dominic Grün, 2019. "A human liver cell atlas reveals heterogeneity and epithelial progenitors," Nature, Nature, vol. 572(7768), pages 199-204, August.
    10. Francisco Avila Cobos & José Alquicira-Hernandez & Joseph E. Powell & Pieter Mestdagh & Katleen Preter, 2020. "Author Correction: Benchmarking of cell type deconvolution pipelines for transcriptomics data," Nature Communications, Nature, vol. 11(1), pages 1-1, December.
    11. Nicholas R. Powell & Tiebing Liang & Joseph Ipe & Sha Cao & Todd C. Skaar & Zeruesenay Desta & Hui-Rong Qian & Philip J. Ebert & Yu Chen & Melissa K. Thomas & Naga Chalasani, 2023. "Clinically important alterations in pharmacogene expression in histologically severe nonalcoholic fatty liver disease," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoyu Song & Jiayi Ji & Joseph H. Rothstein & Stacey E. Alexeeff & Lori C. Sakoda & Adriana Sistig & Ninah Achacoso & Eric Jorgenson & Alice S. Whittemore & Robert J. Klein & Laurel A. Habel & Pei Wa, 2023. "MiXcan: a framework for cell-type-aware transcriptome-wide association studies with an application to breast cancer," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Nelson Johansen & Hongru Hu & Gerald Quon, 2023. "Projecting RNA measurements onto single cell atlases to extract cell type-specific expression profiles using scProjection," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Khoa A. Tran & Venkateswar Addala & Rebecca L. Johnston & David Lovell & Andrew Bradley & Lambros T. Koufariotis & Scott Wood & Sunny Z. Wu & Daniel Roden & Ghamdan Al-Eryani & Alexander Swarbrick & E, 2023. "Performance of tumour microenvironment deconvolution methods in breast cancer using single-cell simulated bulk mixtures," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Gavin J. Sutton & Daniel Poppe & Rebecca K. Simmons & Kieran Walsh & Urwah Nawaz & Ryan Lister & Johann A. Gagnon-Bartsch & Irina Voineagu, 2022. "Comprehensive evaluation of deconvolution methods for human brain gene expression," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    5. Kobe Ridder & Huiwen Che & Kaat Leroy & Bernard Thienpont, 2024. "Benchmarking of methods for DNA methylome deconvolution," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    6. Lei Xiong & Kang Tian & Yuzhe Li & Weixi Ning & Xin Gao & Qiangfeng Cliff Zhang, 2022. "Online single-cell data integration through projecting heterogeneous datasets into a common cell-embedding space," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    7. Daniel Charytonowicz & Rachel Brody & Robert Sebra, 2023. "Interpretable and context-free deconvolution of multi-scale whole transcriptomic data with UniCell deconvolve," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    8. Adrian B. Levine & Liana Nobre & Anirban Das & Scott Milos & Vanessa Bianchi & Monique Johnson & Nicholas R. Fernandez & Lucie Stengs & Scott Ryall & Michelle Ku & Mansuba Rana & Benjamin Laxer & Java, 2024. "Immuno-oncologic profiling of pediatric brain tumors reveals major clinical significance of the tumor immune microenvironment," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    9. Franziska Hildebrandt & Alma Andersson & Sami Saarenpää & Ludvig Larsson & Noémi Van Hul & Sachie Kanatani & Jan Masek & Ewa Ellis & Antonio Barragan & Annelie Mollbrink & Emma R. Andersson & Joakim L, 2021. "Spatial Transcriptomics to define transcriptional patterns of zonation and structural components in the mouse liver," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    10. Jingtao Wang & Gregory J. Fonseca & Jun Ding, 2024. "scSemiProfiler: Advancing large-scale single-cell studies through semi-profiling with deep generative models and active learning," Nature Communications, Nature, vol. 15(1), pages 1-27, December.
    11. Aiko Sekita & Hiroshi Kawasaki & Ayano Fukushima-Nomura & Kiyoshi Yashiro & Keiji Tanese & Susumu Toshima & Koichi Ashizaki & Tomohiro Miyai & Junshi Yazaki & Atsuo Kobayashi & Shinichi Namba & Tatsuh, 2023. "Multifaceted analysis of cross-tissue transcriptomes reveals phenotype–endotype associations in atopic dermatitis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    12. Seoyeon Lee & Mohammad Naimul Islam & Kaveh Boostanpour & Dvir Aran & Guangchun Jin & Stephanie Christenson & Michael A. Matthay & Walter L. Eckalbar & Daryle J. DePianto & Joseph R. Arron & Liam Mage, 2021. "Molecular programs of fibrotic change in aging human lung," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    13. T. Hautz & S. Salcher & M. Fodor & G. Sturm & S. Ebner & A. Mair & M. Trebo & G. Untergasser & S. Sopper & B. Cardini & A. Martowicz & J. Hofmann & S. Daum & M. Kalb & T. Resch & F. Krendl & A. Weisse, 2023. "Immune cell dynamics deconvoluted by single-cell RNA sequencing in normothermic machine perfusion of the liver," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    14. Kang Wang & Ioannis Zerdes & Henrik J. Johansson & Dhifaf Sarhan & Yizhe Sun & Dimitris C. Kanellis & Emmanouil G. Sifakis & Artur Mezheyeuski & Xingrong Liu & Niklas Loman & Ingrid Hedenfalk & Jonas , 2024. "Longitudinal molecular profiling elucidates immunometabolism dynamics in breast cancer," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    15. Yanshuo Chen & Yixuan Wang & Yuelong Chen & Yuqi Cheng & Yumeng Wei & Yunxiang Li & Jiuming Wang & Yingying Wei & Ting-Fung Chan & Yu Li, 2022. "Deep autoencoder for interpretable tissue-adaptive deconvolution and cell-type-specific gene analysis," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    16. Zhenzhen Xun & Xinyu Ding & Yao Zhang & Benyan Zhang & Shujing Lai & Duowu Zou & Junke Zheng & Guoqiang Chen & Bing Su & Leng Han & Youqiong Ye, 2023. "Reconstruction of the tumor spatial microenvironment along the malignant-boundary-nonmalignant axis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    17. Delilah Hendriks & Benedetta Artegiani & Thanasis Margaritis & Iris Zoutendijk & Susana Chuva de Sousa Lopes & Hans Clevers, 2024. "Mapping of mitogen and metabolic sensitivity in organoids defines requirements for human hepatocyte growth," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    18. Hongru Hu & Gerald Quon, 2024. "scPair: Boosting single cell multimodal analysis by leveraging implicit feature selection and single cell atlases," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    19. Eloise Berson & Anjali Sreenivas & Thanaphong Phongpreecha & Amalia Perna & Fiorella C. Grandi & Lei Xue & Neal G. Ravindra & Neelufar Payrovnaziri & Samson Mataraso & Yeasul Kim & Camilo Espinosa & A, 2023. "Whole genome deconvolution unveils Alzheimer’s resilient epigenetic signature," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    20. Yann Vanrobaeys & Zeru J. Peterson & Emily. N. Walsh & Snehajyoti Chatterjee & Li-Chun Lin & Lisa C. Lyons & Thomas Nickl-Jockschat & Ted Abel, 2023. "Spatial transcriptomics reveals unique gene expression changes in different brain regions after sleep deprivation," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-55213-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.