IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1007089.html
   My bibliography  Save this article

Evidence accumulation is biased by motivation: A computational account

Author

Listed:
  • Filip Gesiarz
  • Donal Cahill
  • Tali Sharot

Abstract

To make good judgments people gather information. An important problem an agent needs to solve is when to continue sampling data and when to stop gathering evidence. We examine whether and how the desire to hold a certain belief influences the amount of information participants require to form that belief. Participants completed a sequential sampling task in which they were incentivized to accurately judge whether they were in a desirable state, which was associated with greater rewards than losses, or an undesirable state, which was associated with greater losses than rewards. While one state was better than the other, participants had no control over which they were in, and to maximize rewards they had to maximize accuracy. Results show that participants’ judgments were biased towards believing they were in the desirable state. They required a smaller proportion of supporting evidence to reach that conclusion and ceased gathering samples earlier when reaching the desirable conclusion. The findings were replicated in an additional sample of participants. To examine how this behavior was generated we modeled the data using a drift-diffusion model. This enabled us to assess two potential mechanisms which could be underlying the behavior: (i) a valence-dependent response bias and/or (ii) a valence-dependent process bias. We found that a valence-dependent model, with both a response bias and a process bias, fit the data better than a range of other alternatives, including valence-independent models and models with only a response or process bias. Moreover, the valence-dependent model provided better out-of-sample prediction accuracy than the valence-independent model. Our results provide an account for how the motivation to hold a certain belief decreases the need for supporting evidence. The findings also highlight the advantage of incorporating valence into evidence accumulation models to better explain and predict behavior.Author summary: People tend to gather information before making judgments. As information is often unlimited a decision has to be made as to when the data is sufficient to reach a conclusion. Here, we show that the decision to stop gathering data is influenced by whether the data points towards the desired conclusion. Importantly, we characterize the factors that generate this behaviour using a valence-dependent evidence accumulation model. In a sequential sampling task participants sampled less evidence before reaching a desirable than undesirable conclusion. Despite being incentivized for accuracy, participants’judgments were biased towards believing they were in a desirable state. Fitting the data to an evidence accumulation model revealed this behavior was due both to the starting point and rate of evidence accumulation being biased towards desirable beliefs. Our results show that evidence accumulation is altered by what people want to believe and provide an account for how this modulation is generated.

Suggested Citation

  • Filip Gesiarz & Donal Cahill & Tali Sharot, 2019. "Evidence accumulation is biased by motivation: A computational account," PLOS Computational Biology, Public Library of Science, vol. 15(6), pages 1-15, June.
  • Handle: RePEc:plo:pcbi00:1007089
    DOI: 10.1371/journal.pcbi.1007089
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007089
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007089&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1007089?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sebastian Gluth & Jörg Rieskamp & Christian Büchel, 2013. "Deciding Not to Decide: Computational and Neural Evidence for Hidden Behavior in Sequential Choice," PLOS Computational Biology, Public Library of Science, vol. 9(10), pages 1-15, October.
    2. Michael L. Platt & Paul W. Glimcher, 1999. "Neural correlates of decision variables in parietal cortex," Nature, Nature, vol. 400(6741), pages 233-238, July.
    3. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    4. Lars Chittka & Adrian G. Dyer & Fiola Bock & Anna Dornhaus, 2003. "Bees trade off foraging speed for accuracy," Nature, Nature, vol. 424(6947), pages 388-388, July.
    5. Basten, Ulrike & Biele, Guido & Heekeren, Hauke R. & Fiebach, Christian J., 2010. "How the brain integrates costs and benefits during decision making," SFB 649 Discussion Papers 2010-063, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    6. Kappes, Andreas & Sharot, Tali, 2019. "The automatic nature of motivated belief updating," Behavioural Public Policy, Cambridge University Press, vol. 3(1), pages 87-103, May.
    7. Neil Garrett & Tali Sharot, 2014. "How Robust Is the Optimistic Update Bias for Estimating Self-Risk and Population Base Rates?," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-8, June.
    8. Germain Lefebvre & Maël Lebreton & Florent Meyniel & Sacha Bourgeois-Gironde & Stefano Palminteri, 2017. "Behavioural and neural characterization of optimistic reinforcement learning," Nature Human Behaviour, Nature, vol. 1(4), pages 1-9, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ryan Webb & Paul W. Glimcher & Kenway Louie, 2021. "The Normalization of Consumer Valuations: Context-Dependent Preferences from Neurobiological Constraints," Management Science, INFORMS, vol. 67(1), pages 93-125, January.
    2. Daniel Serra, 2021. "Decision-making: from neuroscience to neuroeconomics—an overview," Theory and Decision, Springer, vol. 91(1), pages 1-80, July.
    3. Clithero, John A., 2018. "Improving out-of-sample predictions using response times and a model of the decision process," Journal of Economic Behavior & Organization, Elsevier, vol. 148(C), pages 344-375.
    4. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    5. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    6. Jesse Elliott & Zemin Bai & Shu-Ching Hsieh & Shannon E Kelly & Li Chen & Becky Skidmore & Said Yousef & Carine Zheng & David J Stewart & George A Wells, 2020. "ALK inhibitors for non-small cell lung cancer: A systematic review and network meta-analysis," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-18, February.
    7. Christina Leuker & Thorsten Pachur & Ralph Hertwig & Timothy J. Pleskac, 2019. "Do people exploit risk–reward structures to simplify information processing in risky choice?," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 5(1), pages 76-94, August.
    8. Francois Olivier & Laval Guillaume, 2011. "Deviance Information Criteria for Model Selection in Approximate Bayesian Computation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-25, July.
    9. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
    10. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    11. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    12. Alessandri, Piergiorgio & Mumtaz, Haroon, 2019. "Financial regimes and uncertainty shocks," Journal of Monetary Economics, Elsevier, vol. 101(C), pages 31-46.
    13. Padilla, Juan L. & Azevedo, Caio L.N. & Lachos, Victor H., 2018. "Multidimensional multiple group IRT models with skew normal latent trait distributions," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 250-268.
    14. Svetlana V. Tishkovskaya & Paul G. Blackwell, 2021. "Bayesian estimation of heterogeneous environments from animal movement data," Environmetrics, John Wiley & Sons, Ltd., vol. 32(6), September.
    15. David Macro & Jeroen Weesie, 2016. "Inequalities between Others Do Matter: Evidence from Multiplayer Dictator Games," Games, MDPI, vol. 7(2), pages 1-23, April.
    16. Tautenhahn, Susanne & Heilmeier, Hermann & Jung, Martin & Kahl, Anja & Kattge, Jens & Moffat, Antje & Wirth, Christian, 2012. "Beyond distance-invariant survival in inverse recruitment modeling: A case study in Siberian Pinus sylvestris forests," Ecological Modelling, Elsevier, vol. 233(C), pages 90-103.
    17. Julian P. T. Higgins & Simon G. Thompson & David J. Spiegelhalter, 2009. "A re‐evaluation of random‐effects meta‐analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 137-159, January.
    18. Simon Mak & Derek Bingham & Yi Lu, 2016. "A regional compound Poisson process for hurricane and tropical storm damage," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(5), pages 677-703, November.
    19. Xi, Yanhui & Peng, Hui & Qin, Yemei & Xie, Wenbiao & Chen, Xiaohong, 2015. "Bayesian analysis of heavy-tailed market microstructure model and its application in stock markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 117(C), pages 141-153.
    20. Huang, Zhaodong & Chien, Steven & Zhu, Wei & Zheng, Pengjun, 2022. "Scheduling wheel inspection for sustainable urban rail transit operation: A Bayesian approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007089. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.