Cost-benefit trade-offs in decision-making and learning
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pcbi.1007326
Download full text from publisher
References listed on IDEAS
- James F. Cavanagh & Sean E. Masters & Kevin Bath & Michael J. Frank, 2014. "Conflict acts as an implicit cost in reinforcement learning," Nature Communications, Nature, vol. 5(1), pages 1-10, December.
- Stefano Palminteri & Germain Lefebvre & Emma J Kilford & Sarah-Jayne Blakemore, 2017. "Confirmation bias in human reinforcement learning: Evidence from counterfactual feedback processing," PLOS Computational Biology, Public Library of Science, vol. 13(8), pages 1-22, August.
- Germain Lefebvre & Maël Lebreton & Florent Meyniel & Sacha Bourgeois-Gironde & Stefano Palminteri, 2017. "Behavioural and neural characterization of optimistic reinforcement learning," Nature Human Behaviour, Nature, vol. 1(4), pages 1-9, April.
- Jean Daunizeau & Vincent Adam & Lionel Rigoux, 2014. "VBA: A Probabilistic Treatment of Nonlinear Models for Neurobiological and Behavioural Data," PLOS Computational Biology, Public Library of Science, vol. 10(1), pages 1-16, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chih-Chung Ting & Nahuel Salem-Garcia & Stefano Palminteri & Jan B. Engelmann & Maël Lebreton, 2023.
"Neural and computational underpinnings of biased confidence in human reinforcement learning,"
Nature Communications, Nature, vol. 14(1), pages 1-18, December.
- Chih-Chung Ting & Nahuel Salem-Garcia & Stefano Palminteri & Jan Engelmann & Maël Lebreton, 2023. "Neural and computational underpinnings of biased confidence in human reinforcement learning," PSE-Ecole d'économie de Paris (Postprint) halshs-04409145, HAL.
- Chih-Chung Ting & Nahuel Salem-Garcia & Stefano Palminteri & Jan Engelmann & Maël Lebreton, 2023. "Neural and computational underpinnings of biased confidence in human reinforcement learning," Post-Print halshs-04409145, HAL.
- Johann Lussange & Ivan Lazarevich & Sacha Bourgeois-Gironde & Stefano Palminteri & Boris Gutkin, 2021. "Modelling Stock Markets by Multi-agent Reinforcement Learning," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 113-147, January.
- Daniel J. Benjamin, 2018.
"Errors in Probabilistic Reasoning and Judgment Biases,"
NBER Working Papers
25200, National Bureau of Economic Research, Inc.
- Daniel J. Benjamin, 2018. "Errors in Probabilistic Reasoning and Judgment Biases," GRU Working Paper Series GRU_2018_023, City University of Hong Kong, Department of Economics and Finance, Global Research Unit.
- Stefano Palminteri & Germain Lefebvre & Emma J Kilford & Sarah-Jayne Blakemore, 2017. "Confirmation bias in human reinforcement learning: Evidence from counterfactual feedback processing," PLOS Computational Biology, Public Library of Science, vol. 13(8), pages 1-22, August.
- Aurélien Nioche & Basile Garcia & Germain Lefebvre & Thomas Boraud & Nicolas P. Rougier & Sacha Bourgeois-Gironde, 2019.
"Coordination over a unique medium of exchange under information scarcity,"
Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-11, December.
- Aurélien Nioche & Basile Garcia & Germain Lefebvre & Thomas Boraud & Nicolas P. Rougier & Sacha Bourgeois-Gironde, 2019. "Coordination over a unique medium of exchange under information scarcity," Post-Print hal-02356248, HAL.
- Simon Ciranka & Juan Linde-Domingo & Ivan Padezhki & Clara Wicharz & Charley M. Wu & Bernhard Spitzer, 2022. "Asymmetric reinforcement learning facilitates human inference of transitive relations," Nature Human Behaviour, Nature, vol. 6(4), pages 555-564, April.
- Johann Lussange & Stefano Vrizzi & Stefano Palminteri & Boris Gutkin, 2024. "Modelling crypto markets by multi-agent reinforcement learning," Papers 2402.10803, arXiv.org.
- repec:hal:journl:hal-04790290 is not listed on IDEAS
- Antoine Collomb-Clerc & Maëlle C. M. Gueguen & Lorella Minotti & Philippe Kahane & Vincent Navarro & Fabrice Bartolomei & Romain Carron & Jean Regis & Stephan Chabardès & Stefano Palminteri & Julien B, 2023. "Human thalamic low-frequency oscillations correlate with expected value and outcomes during reinforcement learning," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Zixuan Tang & Chen Qu & Yang Hu & Julien Benistant & Frederic Moisan & Edmund Derrington & Jean-Claude Dreher, 2023. "Strengths of social ties modulate brain computations for third-party punishment," Post-Print hal-04325737, HAL.
- Johann Lussange & Stefano Vrizzi & Sacha Bourgeois-Gironde & Stefano Palminteri & Boris Gutkin, 2023.
"Stock Price Formation: Precepts from a Multi-Agent Reinforcement Learning Model,"
Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1523-1544, April.
- Johann Lussange & Stefano Vrizzi & Sacha Bourgeois-Gironde & Stefano Palminteri & Boris Gutkin, 2022. "Stock Price Formation: Precepts from a Multi-Agent Reinforcement Learning Model," Post-Print hal-03827363, HAL.
- Tapia, Carlos & Coulton, Jeff & Saydam, Serkan, 2020. "Using entropy to assess dynamic behaviour of long-term copper price," Resources Policy, Elsevier, vol. 66(C).
- Sudipta Mukherjee, 2022. "Consumer altruism and risk taking: why do altruistic consumers take more risks?," International Review on Public and Nonprofit Marketing, Springer;International Association of Public and Non-Profit Marketing, vol. 19(4), pages 781-803, December.
- He A Xu & Alireza Modirshanechi & Marco P Lehmann & Wulfram Gerstner & Michael H Herzog, 2021. "Novelty is not surprise: Human exploratory and adaptive behavior in sequential decision-making," PLOS Computational Biology, Public Library of Science, vol. 17(6), pages 1-32, June.
- Flavia Mancini & Suyi Zhang & Ben Seymour, 2022. "Computational and neural mechanisms of statistical pain learning," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Cristofaro, Matteo, 2020. "“I feel and think, therefore I am”: An Affect-Cognitive Theory of management decisions," European Management Journal, Elsevier, vol. 38(2), pages 344-355.
- Maël Lebreton & Karin Bacily & Stefano Palminteri & Jan B Engelmann, 2019. "Contextual influence on confidence judgments in human reinforcement learning," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-27, April.
- Hu Sun & Yun Wang, 2019. "Do On-lookers See Most of the Game? Evaluating Job-seekers' Competitiveness of Oneself versus of Others in a Labor Market Experiment," Working Papers 2019-07-11, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
- Filip Gesiarz & Donal Cahill & Tali Sharot, 2019. "Evidence accumulation is biased by motivation: A computational account," PLOS Computational Biology, Public Library of Science, vol. 15(6), pages 1-15, June.
- Tsutomu Harada, 2021. "Three heads are better than two: Comparing learning properties and performances across individuals, dyads, and triads through a computational approach," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-16, June.
- Damien Challet & Vincent Ragel, 2023.
"Recurrent Neural Networks with more flexible memory: better predictions than rough volatility,"
Working Papers
hal-04165354, HAL.
- Damien Challet & Vincent Ragel, 2023. "Recurrent Neural Networks with more flexible memory: better predictions than rough volatility," Papers 2308.08550, arXiv.org.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007326. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.