IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0226861.html
   My bibliography  Save this article

Developing political-ecological theory: The need for many-task computing

Author

Listed:
  • Timothy Haas

Abstract

Models of political-ecological systems can inform policies for managing ecosystems that contain endangered species. To increase the credibility of these models, massive computation is needed to statistically estimate the model’s parameters, compute confidence intervals for these parameters, determine the model’s prediction error rate, and assess its sensitivity to parameter misspecification. To meet this statistical and computational challenge, this article delivers statistical algorithms and a method for constructing ecosystem management plans that are coded as distributed computing applications. These applications can run on cluster computers, the cloud, or a collection of in-house workstations. This downloadable code is used to address the challenge of conserving the East African cheetah (Acinonyx jubatus). This demonstration means that the new standard of credibility that any political-ecological model needs to meet is the one given herein.

Suggested Citation

  • Timothy Haas, 2020. "Developing political-ecological theory: The need for many-task computing," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-26, November.
  • Handle: RePEc:plo:pone00:0226861
    DOI: 10.1371/journal.pone.0226861
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0226861
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0226861&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0226861?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mishra, Sudhanshu, 2006. "Some new test functions for global optimization and performance of repulsive particle swarm method," MPRA Paper 2718, University Library of Munich, Germany.
    2. Timothy C Haas & Sam M Ferreira, 2016. "Combating Rhino Horn Trafficking: The Need to Disrupt Criminal Networks," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-26, November.
    3. Tashkova, Katerina & Šilc, Jurij & Atanasova, Nataša & Džeroski, Sašo, 2012. "Parameter estimation in a nonlinear dynamic model of an aquatic ecosystem with meta-heuristic optimization," Ecological Modelling, Elsevier, vol. 226(C), pages 36-61.
    4. Grazzini, Jakob & Richiardi, Matteo, 2015. "Estimation of ergodic agent-based models by simulated minimum distance," Journal of Economic Dynamics and Control, Elsevier, vol. 51(C), pages 148-165.
    5. Sungho Shin & Ophelia S Venturelli & Victor M Zavala, 2019. "Scalable nonlinear programming framework for parameter estimation in dynamic biological system models," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-29, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jessica M. Mc Lay & Roy Lay-Yee & Barry J. Milne & Peter Davis, 2015. "Regression-Style Models for Parameter Estimation in Dynamic Microsimulation: An Empirical Performance Assessment," International Journal of Microsimulation, International Microsimulation Association, vol. 8(2), pages 83-127.
    2. Ernesto Carrella & Richard M. Bailey & Jens Koed Madsen, 2018. "Indirect inference through prediction," Papers 1807.01579, arXiv.org.
    3. Grazzini, Jakob & Richiardi, Matteo G. & Tsionas, Mike, 2017. "Bayesian estimation of agent-based models," Journal of Economic Dynamics and Control, Elsevier, vol. 77(C), pages 26-47.
    4. Ross Richardson & Matteo G. Richiardi & Michael Wolfson, 2015. "We ran one billion agents. Scaling in simulation models," LABORatorio R. Revelli Working Papers Series 142, LABORatorio R. Revelli, Centre for Employment Studies.
    5. Kukacka, Jiri & Jang, Tae-Seok & Sacht, Stephen, 2018. "On the estimation of behavioral macroeconomic models via simulated maximum likelihood," Economics Working Papers 2018-11, Christian-Albrechts-University of Kiel, Department of Economics.
    6. repec:spo:wpmain:info:hdl:2441/50jd34uldo9jioklc7b0dpu4ej is not listed on IDEAS
    7. Delli Gatti, Domenico & Grazzini, Jakob, 2020. "Rising to the challenge: Bayesian estimation and forecasting techniques for macroeconomic Agent Based Models," Journal of Economic Behavior & Organization, Elsevier, vol. 178(C), pages 875-902.
    8. Severin Reissl & Alessandro Caiani & Francesco Lamperti & Mattia Guerini & Fabio Vanni & Giorgio Fagiolo & Tommaso Ferraresi & Leonardo Ghezzi & Mauro Napoletano & Andrea Roventini, 2022. "Assessing the Economic Impact of Lockdowns in Italy: A Computational Input–Output Approach [Nonlinear Production Networks with an Application to the Covid-19 Crisis]," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 31(2), pages 358-409.
    9. Barde, Sylvain, 2020. "Macroeconomic simulation comparison with a multivariate extension of the Markov information criterion," Journal of Economic Dynamics and Control, Elsevier, vol. 111(C).
    10. Giovanni Dosi & Marcelo C. Pereira & Andrea Roventini & Maria Enrica Virgillito, 2016. "The Effects of Labour Market Reforms upon Unemployment and Income Inequalities: an Agent Based Model," LEM Papers Series 2016/27, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    11. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
    12. Mishra, SK, 2006. "Performance of Differential Evolution and Particle Swarm Methods on Some Relatively Harder Multi-modal Benchmark Functions," MPRA Paper 449, University Library of Munich, Germany.
    13. repec:hal:spmain:info:hdl:2441/3kbkotqp1b85pa2lu2puri38p6 is not listed on IDEAS
    14. Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2017. "Validation of Agent-Based Models in Economics and Finance," LEM Papers Series 2017/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    15. Zila, Eric & Kukacka, Jiri, 2023. "Moment set selection for the SMM using simple machine learning," Journal of Economic Behavior & Organization, Elsevier, vol. 212(C), pages 366-391.
    16. Guerini, Mattia & Napoletano, Mauro & Roventini, Andrea, 2018. "No man is an Island: The impact of heterogeneity and local interactions on macroeconomic dynamics," Economic Modelling, Elsevier, vol. 68(C), pages 82-95.
    17. Donovan Platt, 2022. "Bayesian Estimation of Economic Simulation Models Using Neural Networks," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 599-650, February.
    18. Emanuele Ciola & Edoardo Gaffeo & Mauro Gallegati, 2021. "Search for Profits and Business Fluctuations: How Banks' Behaviour Explain Cycles?," Working Papers 450, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    19. Barde, Sylvain, 2024. "Bayesian estimation of large-scale simulation models with Gaussian process regression surrogates," Computational Statistics & Data Analysis, Elsevier, vol. 196(C).
    20. Weitao Sun & Yuan Dong, 2011. "Study of multiscale global optimization based on parameter space partition," Journal of Global Optimization, Springer, vol. 49(1), pages 149-172, January.
    21. Giovanni Dosi & Marcelo C. Pereira & Andrea Roventini & Maria Enrica Virgillito, 2016. "The Effects of Labour Market Reforms upon Unemployment and Income Inequalities: an Agent Based Model," LEM Papers Series 2016/27, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    22. Gianluca Capone & Franco Malerba & Richard R. Nelson & Luigi Orsenigo & Sidney G. Winter, 2019. "History friendly models: retrospective and future perspectives," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 9(1), pages 1-23, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0226861. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.