IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006527.html
   My bibliography  Save this article

State dependence of stimulus-induced variability tuning in macaque MT

Author

Listed:
  • Joseph A Lombardo
  • Matthew V Macellaio
  • Bing Liu
  • Stephanie E Palmer
  • Leslie C Osborne

Abstract

Behavioral states marked by varying levels of arousal and attention modulate some properties of cortical responses (e.g. average firing rates or pairwise correlations), yet it is not fully understood what drives these response changes and how they might affect downstream stimulus decoding. Here we show that changes in state modulate the tuning of response variance-to-mean ratios (Fano factors) in a fashion that is neither predicted by a Poisson spiking model nor changes in the mean firing rate, with a substantial effect on stimulus discriminability. We recorded motion-sensitive neurons in middle temporal cortex (MT) in two states: alert fixation and light, opioid anesthesia. Anesthesia tended to lower average spike counts, without decreasing trial-to-trial variability compared to the alert state. Under anesthesia, within-trial fluctuations in excitability were correlated over longer time scales compared to the alert state, creating supra-Poisson Fano factors. In contrast, alert-state MT neurons have higher mean firing rates and largely sub-Poisson variability that is stimulus-dependent and cannot be explained by firing rate differences alone. The absence of such stimulus-induced variability tuning in the anesthetized state suggests different sources of variability between states. A simple model explains state-dependent shifts in the distribution of observed Fano factors via a suppression in the variance of gain fluctuations in the alert state. A population model with stimulus-induced variability tuning and behaviorally constrained information-limiting correlations explores the potential enhancement in stimulus discriminability by the cortical population in the alert state.Author summary: The brain controls behavior fluidly in a wide variety of cognitive contexts that alter the precision of neural responses. We examine how neural variability changes versus the mean response as a function of the stimulus and the behavioral state. We show that this scaled variability can have qualitatively different stimulus tuning in different behavioral contexts. In alert primates, scaled variability is tuned to the direction of motion of a visual stimulus and decreases around the preferred direction of each neuron. Under anesthesia, neurons show flat scaled variability tuning and, overall, responses are significantly more variable. We develop a simple model that includes a parameter describing firing rate gain fluctuations that can explain these changes. Our results suggest that tuned decreases in scaled variability during wakefulness may be mediated by an active process that suppresses synchronization and makes information transmission more reliable.

Suggested Citation

  • Joseph A Lombardo & Matthew V Macellaio & Bing Liu & Stephanie E Palmer & Leslie C Osborne, 2018. "State dependence of stimulus-induced variability tuning in macaque MT," PLOS Computational Biology, Public Library of Science, vol. 14(10), pages 1-28, October.
  • Handle: RePEc:plo:pcbi00:1006527
    DOI: 10.1371/journal.pcbi.1006527
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006527
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006527&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006527?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Matteo Carandini, 2004. "Amplification of Trial-to-Trial Response Variability by Neurons in Visual Cortex," PLOS Biology, Public Library of Science, vol. 2(9), pages 1-1, August.
    2. Joel Zylberberg & Alexandre Pouget & Peter E Latham & Eric Shea-Brown, 2017. "Robust information propagation through noisy neural circuits," PLOS Computational Biology, Public Library of Science, vol. 13(4), pages 1-35, April.
    3. Bing Liu & Matthew V. Macellaio & Leslie C. Osborne, 2016. "Efficient sensory cortical coding optimizes pursuit eye movements," Nature Communications, Nature, vol. 7(1), pages 1-10, November.
    4. J. L. Vincent & G. H. Patel & M. D. Fox & A. Z. Snyder & J. T. Baker & D. C. Van Essen & J. M. Zempel & L. H. Snyder & M. Corbetta & M. E. Raichle, 2007. "Intrinsic functional architecture in the anaesthetized monkey brain," Nature, Nature, vol. 447(7140), pages 83-86, May.
    5. Leslie C. Osborne & Stephen G. Lisberger & William Bialek, 2005. "A sensory source for motor variation," Nature, Nature, vol. 437(7057), pages 412-416, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. María Alonso‐Pena & Irène Gijbels & Rosa M. Crujeiras, 2023. "Flexible joint modeling of mean and dispersion for the directional tuning of neuronal spike counts," Biometrics, The International Biometric Society, vol. 79(4), pages 3431-3444, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Biyu J He & John M Zempel, 2013. "Average Is Optimal: An Inverted-U Relationship between Trial-to-Trial Brain Activity and Behavioral Performance," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-14, November.
    2. Protachevicz, Paulo Ricardo & Borges, Fernando da Silva & Batista, Antonio Marcos & Baptista, Murilo da Silva & Caldas, Iberê Luiz & Macau, Elbert Einstein Nehrer & Lameu, Ewandson Luiz, 2023. "Plastic neural network with transmission delays promotes equivalence between function and structure," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    3. Laura Biagi & Sofia Allegra Crespi & Michela Tosetti & Maria Concetta Morrone, 2015. "BOLD Response Selective to Flow-Motion in Very Young Infants," PLOS Biology, Public Library of Science, vol. 13(9), pages 1-22, September.
    4. Huee Ru Chong & Yadollah Ranjbar-Slamloo & Malcolm Zheng Hao Ho & Xuan Ouyang & Tsukasa Kamigaki, 2023. "Functional alterations of the prefrontal circuit underlying cognitive aging in mice," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Kenta Tominaga & André Lee & Eckart Altenmüller & Fumio Miyazaki & Shinichi Furuya, 2016. "Kinematic Origins of Motor Inconsistency in Expert Pianists," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-15, August.
    6. Alessandra Griffa & Mathieu Mach & Julien Dedelley & Daniel Gutierrez-Barragan & Alessandro Gozzi & Gilles Allali & Joanes Grandjean & Dimitri Ville & Enrico Amico, 2023. "Evidence for increased parallel information transmission in human brain networks compared to macaques and male mice," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. Caroline Haimerl & Douglas A. Ruff & Marlene R. Cohen & Cristina Savin & Eero P. Simoncelli, 2023. "Targeted V1 comodulation supports task-adaptive sensory decisions," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Seth W. Egger & Stephen G. Lisberger, 2022. "Neural structure of a sensory decoder for motor control," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    9. Lin, Lihui, 2021. "Does the procedure matter?," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 90(C).
    10. Anandamohan Ghosh & Y Rho & A R McIntosh & R Kötter & V K Jirsa, 2008. "Noise during Rest Enables the Exploration of the Brain's Dynamic Repertoire," PLOS Computational Biology, Public Library of Science, vol. 4(10), pages 1-12, October.
    11. Chaogan Yan & Dongqiang Liu & Yong He & Qihong Zou & Chaozhe Zhu & Xinian Zuo & Xiangyu Long & Yufeng Zang, 2009. "Spontaneous Brain Activity in the Default Mode Network Is Sensitive to Different Resting-State Conditions with Limited Cognitive Load," PLOS ONE, Public Library of Science, vol. 4(5), pages 1-11, May.
    12. Robert Leech & Gregory Scott & Robin Carhart-Harris & Federico Turkheimer & Simon D Taylor-Robinson & David J Sharp, 2014. "Spatial Dependencies between Large-Scale Brain Networks," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-10, June.
    13. Medina, José M. & Díaz, José A., 2016. "Extreme reaction times determine fluctuation scaling in human color vision," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 125-132.
    14. Adrián Ponce-Alvarez & Biyu J He & Patric Hagmann & Gustavo Deco, 2015. "Task-Driven Activity Reduces the Cortical Activity Space of the Brain: Experiment and Whole-Brain Modeling," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-26, August.
    15. Paolo Tommasino & Antonella Maselli & Domenico Campolo & Francesco Lacquaniti & Andrea d’Avella, 2021. "A Hessian-based decomposition characterizes how performance in complex motor skills depends on individual strategy and variability," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-32, June.
    16. Sean T Kelly & Jens Kremkow & Jianzhong Jin & Yushi Wang & Qi Wang & Jose-Manuel Alonso & Garrett B Stanley, 2014. "The Role of Thalamic Population Synchrony in the Emergence of Cortical Feature Selectivity," PLOS Computational Biology, Public Library of Science, vol. 10(1), pages 1-13, January.
    17. Andrea I. Luppi & Lynn Uhrig & Jordy Tasserie & Camilo M. Signorelli & Emmanuel A. Stamatakis & Alain Destexhe & Bechir Jarraya & Rodrigo Cofre, 2024. "Local orchestration of distributed functional patterns supporting loss and restoration of consciousness in the primate brain," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    18. Nicole Eichert & Jordan DeKraker & Amy F. D. Howard & Istvan N. Huszar & Silei Zhu & Jérôme Sallet & Karla L. Miller & Rogier B. Mars & Saad Jbabdi & Boris C. Bernhardt, 2024. "Hippocampal connectivity patterns echo macroscale cortical evolution in the primate brain," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Joby John & Jonathan B Dingwell & Joseph P Cusumano, 2016. "Error Correction and the Structure of Inter-Trial Fluctuations in a Redundant Movement Task," PLOS Computational Biology, Public Library of Science, vol. 12(9), pages 1-30, September.
    20. Jonathan B Dingwell & Joby John & Joseph P Cusumano, 2010. "Do Humans Optimally Exploit Redundancy to Control Step Variability in Walking?," PLOS Computational Biology, Public Library of Science, vol. 6(7), pages 1-15, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006527. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.