IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53416-w.html
   My bibliography  Save this article

Exploration-based learning of a stabilizing controller predicts locomotor adaptation

Author

Listed:
  • Nidhi Seethapathi

    (Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

  • Barrett C. Clark

    (Inc.)

  • Manoj Srinivasan

    (the Ohio State University
    the Ohio State University)

Abstract

Humans adapt their locomotion seamlessly in response to changes in the body or the environment. It is unclear how such adaptation improves performance measures like energy consumption or symmetry while avoiding falling. Here, we model locomotor adaptation as interactions between a stabilizing controller that reacts quickly to perturbations and a reinforcement learner that gradually improves the controller’s performance through local exploration and memory. This model predicts time-varying adaptation in many settings: walking on a split-belt treadmill (i.e. with both feet at different speeds), with asymmetric leg weights, or using exoskeletons — capturing learning and generalization phenomena in ten prior experiments and two model-guided experiments conducted here. The performance measure of energy minimization with a minor cost for asymmetry captures a broad range of phenomena and can act alongside other mechanisms such as reducing sensory prediction error. Such a model-based understanding of adaptation can guide rehabilitation and wearable robot control.

Suggested Citation

  • Nidhi Seethapathi & Barrett C. Clark & Manoj Srinivasan, 2024. "Exploration-based learning of a stabilizing controller predicts locomotor adaptation," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53416-w
    DOI: 10.1038/s41467-024-53416-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53416-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53416-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Manoj Srinivasan & Andy Ruina, 2006. "Computer optimization of a minimal biped model discovers walking and running," Nature, Nature, vol. 439(7072), pages 72-75, January.
    2. James B. Heald & Máté Lengyel & Daniel M. Wolpert, 2021. "Contextual inference underlies the learning of sensorimotor repertoires," Nature, Nature, vol. 600(7889), pages 489-493, December.
    3. Joshua G A Cashaback & Heather R McGregor & Ayman Mohatarem & Paul L Gribble, 2017. "Dissociating error-based and reinforcement-based loss functions during sensorimotor learning," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-28, July.
    4. Christopher M. Harris & Daniel M. Wolpert, 1998. "Signal-dependent noise determines motor planning," Nature, Nature, vol. 394(6695), pages 780-784, August.
    5. Leslie C. Osborne & Stephen G. Lisberger & William Bialek, 2005. "A sensory source for motor variation," Nature, Nature, vol. 437(7057), pages 412-416, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonathan B Dingwell & Joby John & Joseph P Cusumano, 2010. "Do Humans Optimally Exploit Redundancy to Control Step Variability in Walking?," PLOS Computational Biology, Public Library of Science, vol. 6(7), pages 1-15, July.
    2. Seth W. Egger & Stephen G. Lisberger, 2022. "Neural structure of a sensory decoder for motor control," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Paolo Tommasino & Antonella Maselli & Domenico Campolo & Francesco Lacquaniti & Andrea d’Avella, 2021. "A Hessian-based decomposition characterizes how performance in complex motor skills depends on individual strategy and variability," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-32, June.
    4. Dagmar Sternad & Masaki O Abe & Xiaogang Hu & Hermann Müller, 2011. "Neuromotor Noise, Error Tolerance and Velocity-Dependent Costs in Skilled Performance," PLOS Computational Biology, Public Library of Science, vol. 7(9), pages 1-15, September.
    5. Kang He & You Liang & Farnaz Abdollahi & Moria Fisher Bittmann & Konrad Kording & Kunlin Wei, 2016. "The Statistical Determinants of the Speed of Motor Learning," PLOS Computational Biology, Public Library of Science, vol. 12(9), pages 1-20, September.
    6. Shogo Yonekura & Yasuo Kuniyoshi, 2017. "Bodily motion fluctuation improves reaching success rate in a neurophysical agent via geometric-stochastic resonance," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-16, December.
    7. Shih-Wei Wu & Maria F Dal Martello & Laurence T Maloney, 2009. "Sub-Optimal Allocation of Time in Sequential Movements," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-13, December.
    8. Max Berniker & Megan K O’Brien & Konrad P Kording & Alaa A Ahmed, 2013. "An Examination of the Generalizability of Motor Costs," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-11, January.
    9. Pierre Vassiliadis & Elena Beanato & Traian Popa & Fabienne Windel & Takuya Morishita & Esra Neufeld & Julie Duque & Gerard Derosiere & Maximilian J. Wessel & Friedhelm C. Hummel, 2024. "Non-invasive stimulation of the human striatum disrupts reinforcement learning of motor skills," Nature Human Behaviour, Nature, vol. 8(8), pages 1581-1598, August.
    10. Kenta Tominaga & André Lee & Eckart Altenmüller & Fumio Miyazaki & Shinichi Furuya, 2016. "Kinematic Origins of Motor Inconsistency in Expert Pianists," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-15, August.
    11. Lionel Rigoux & Emmanuel Guigon, 2012. "A Model of Reward- and Effort-Based Optimal Decision Making and Motor Control," PLOS Computational Biology, Public Library of Science, vol. 8(10), pages 1-13, October.
    12. Caroline Haimerl & Douglas A. Ruff & Marlene R. Cohen & Cristina Savin & Eero P. Simoncelli, 2023. "Targeted V1 comodulation supports task-adaptive sensory decisions," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    13. Yanhao Ren & Qiang Luo & Wenlian Lu, 2023. "Synchronization Analysis of Linearly Coupled Systems with Signal-Dependent Noises," Mathematics, MDPI, vol. 11(10), pages 1-15, May.
    14. Siddhartha Bikram Panday & Prabhat Pathak & Jeheon Moon & Dohoon Koo, 2022. "Complexity of Running and Its Relationship with Joint Kinematics during a Prolonged Run," IJERPH, MDPI, vol. 19(15), pages 1-24, August.
    15. Christopher J Hasson & Zhaoran Zhang & Masaki O Abe & Dagmar Sternad, 2016. "Neuromotor Noise Is Malleable by Amplifying Perceived Errors," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-28, August.
    16. Ashesh Vasalya & Gowrishankar Ganesh & Abderrahmane Kheddar, 2018. "More than just co-workers: Presence of humanoid robot co-worker influences human performance," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-19, November.
    17. Josh Merel & Donald M Pianto & John P Cunningham & Liam Paninski, 2015. "Encoder-Decoder Optimization for Brain-Computer Interfaces," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-25, June.
    18. Maxime Teremetz & Isabelle Amado & Narjes Bendjemaa & Marie-Odile Krebs & Pavel G Lindberg & Marc A Maier, 2014. "Deficient Grip Force Control in Schizophrenia: Behavioral and Modeling Evidence for Altered Motor Inhibition and Motor Noise," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-11, November.
    19. Frederic Danion & Raoul M Bongers & Reinoud J Bootsma, 2014. "The Trade-Off between Spatial and Temporal Variabilities in Reciprocal Upper-Limb Aiming Movements of Different Durations," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-10, May.
    20. Wei Zhang & Sasha Reschechtko & Barry Hahn & Cynthia Benson & Elias Youssef, 2019. "Force-stabilizing synergies can be retained by coordinating sensory-blocked and sensory-intact digits," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53416-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.