IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006449.html
   My bibliography  Save this article

Implications of alternative routes to APC/C inhibition by the mitotic checkpoint complex

Author

Listed:
  • Fridolin Gross
  • Paolo Bonaiuti
  • Silke Hauf
  • Andrea Ciliberto

Abstract

The mitotic checkpoint (also called spindle assembly checkpoint) is a signaling pathway that ensures faithful chromosome segregation. Mitotic checkpoint proteins inhibit the anaphase-promoting complex (APC/C) and its activator Cdc20 to prevent precocious anaphase. Checkpoint signaling leads to a complex of APC/C, Cdc20, and checkpoint proteins, in which the APC/C is inactive. In principle, this final product of the mitotic checkpoint can be obtained via different pathways, whose relevance still needs to be fully ascertained experimentally. Here, we use mathematical models to compare the implications on checkpoint response of the possible pathways leading to APC/C inhibition. We identify a previously unrecognized funneling effect for Cdc20, which favors Cdc20 incorporation into the inhibitory complex and therefore promotes checkpoint activity. Furthermore, we find that the presence or absence of one specific assembly reaction determines whether the checkpoint remains functional at elevated levels of Cdc20, which can occur in cancer cells. Our results reveal the inhibitory logics behind checkpoint activity, predict checkpoint efficiency in perturbed situations, and could inform molecular strategies to treat malignancies that exhibit Cdc20 overexpression.Author summary: Cell division is a fundamental event in the life of cells. It requires that a mother cell gives rise to two daughters which carry the same genetic material of their mother. Thus, during each cell cycle the genetic material needs to be replicated, compacted into chromosomes and redistributed to the two daughter cells. Any mistake in chromosome segregation would attribute the wrong number of chromosomes to the progeny. Hence, the process of chromosome segregation is closely watched by a surveillance mechanism known as the mitotic checkpoint. The molecular players of the checkpoint pathway are well known: we know both the input (ie, the species to be inhibited and their inhibitors), and the output (ie, the inhibited species). However, we do not exactly know the path that leads from the former to the latter. In this manuscript, we use a mathematical approach to explore the properties of plausible mitotic checkpoint networks. We find that seemingly similar circuits show very different behaviors for high levels of the protein targeted by the mitotic checkpoint, Cdc20. Interestingly, this protein is often overexpressed in cancer cells. For physiological levels of Cdc20, instead, all the models we have analyzed are capable to mount an efficient response. We find that this is due to a series of consecutive protein-protein binding reactions that funnel Cdc20 towards its inhibited state. We call this the funneling effect. Our analysis helps understanding the inhibitory logics underlying the checkpoint, and proposes new concepts that could be applied to other inhibitory pathways.

Suggested Citation

  • Fridolin Gross & Paolo Bonaiuti & Silke Hauf & Andrea Ciliberto, 2018. "Implications of alternative routes to APC/C inhibition by the mitotic checkpoint complex," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-19, September.
  • Handle: RePEc:plo:pcbi00:1006449
    DOI: 10.1371/journal.pcbi.1006449
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006449
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006449&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006449?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marco Simonetta & Romilde Manzoni & Roberto Mosca & Marina Mapelli & Lucia Massimiliano & Martin Vink & Bela Novak & Andrea Musacchio & Andrea Ciliberto, 2009. "The Influence of Catalysis on Mad2 Activation Dynamics," PLOS Biology, Public Library of Science, vol. 7(1), pages 1-14, January.
    2. Claudio Alfieri & Leifu Chang & Ziguo Zhang & Jing Yang & Sarah Maslen & Mark Skehel & David Barford, 2016. "Molecular basis of APC/C regulation by the spindle assembly checkpoint," Nature, Nature, vol. 536(7617), pages 431-436, August.
    3. Jing Chen & Jian Liu, 2014. "Spatial-temporal model for silencing of the mitotic spindle assembly checkpoint," Nature Communications, Nature, vol. 5(1), pages 1-13, December.
    4. Leifu Chang & Ziguo Zhang & Jing Yang & Stephen H. McLaughlin & David Barford, 2014. "Molecular architecture and mechanism of the anaphase-promoting complex," Nature, Nature, vol. 513(7518), pages 388-393, September.
    5. Alex C. Faesen & Maria Thanasoula & Stefano Maffini & Claudia Breit & Franziska Müller & Suzan van Gerwen & Tanja Bange & Andrea Musacchio, 2017. "Basis of catalytic assembly of the mitotic checkpoint complex," Nature, Nature, vol. 542(7642), pages 498-502, February.
    6. Daisuke Izawa & Jonathon Pines, 2015. "The mitotic checkpoint complex binds a second CDC20 to inhibit active APC/C," Nature, Nature, vol. 517(7536), pages 631-634, January.
    7. William C. H. Chao & Kiran Kulkarni & Ziguo Zhang & Eric H. Kong & David Barford, 2012. "Structure of the mitotic checkpoint complex," Nature, Nature, vol. 484(7393), pages 208-213, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elyse S. Fischer & Conny W. H. Yu & Johannes F. Hevler & Stephen H. McLaughlin & Sarah L. Maslen & Albert J. R. Heck & Stefan M. V. Freund & David Barford, 2022. "Juxtaposition of Bub1 and Cdc20 on phosphorylated Mad1 during catalytic mitotic checkpoint complex assembly," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    2. Chu Chen & Valentina Piano & Amal Alex & Simon J. Y. Han & Pim J. Huis in ’t Veld & Babhrubahan Roy & Daniel Fergle & Andrea Musacchio & Ajit P. Joglekar, 2023. "The structural flexibility of MAD1 facilitates the assembly of the Mitotic Checkpoint Complex," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Christopher Thomas & Benjamin Wetherall & Mark D. Levasseur & Rebecca J. Harris & Scott T. Kerridge & Jonathan M. G. Higgins & Owen R. Davies & Suzanne Madgwick, 2021. "A prometaphase mechanism of securin destruction is essential for meiotic progression in mouse oocytes," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    4. Sang Bae Lee & Luciano Garofano & Aram Ko & Fulvio D’Angelo & Brulinda Frangaj & Danika Sommer & Qiwen Gan & KyeongJin Kim & Timothy Cardozo & Antonio Iavarone & Anna Lasorella, 2022. "Regulated interaction of ID2 with the anaphase-promoting complex links progression through mitosis with reactivation of cell-type-specific transcription," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Nairi Hartooni & Jongmin Sung & Ankur Jain & David O. Morgan, 2022. "Single-molecule analysis of specificity and multivalency in binding of short linear substrate motifs to the APC/C," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Christian Hoischen & Sibel Yavas & Thorsten Wohland & Stephan Diekmann, 2018. "CENP-C/H/I/K/M/T/W/N/L and hMis12 but not CENP-S/X participate in complex formation in the nucleoplasm of living human interphase cells outside centromeres," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-26, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006449. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.