IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v484y2012i7393d10.1038_nature10896.html
   My bibliography  Save this article

Structure of the mitotic checkpoint complex

Author

Listed:
  • William C. H. Chao

    (Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK)

  • Kiran Kulkarni

    (Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK)

  • Ziguo Zhang

    (Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK)

  • Eric H. Kong

    (Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK)

  • David Barford

    (Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK)

Abstract

In mitosis, the spindle assembly checkpoint (SAC) ensures genome stability by delaying chromosome segregation until all sister chromatids have achieved bipolar attachment to the mitotic spindle. The SAC is imposed by the mitotic checkpoint complex (MCC), whose assembly is catalysed by unattached chromosomes and which binds and inhibits the anaphase-promoting complex/cyclosome (APC/C), the E3 ubiquitin ligase that initiates chromosome segregation. Here, using the crystal structure of Schizosaccharomyces pombe MCC (a complex of mitotic spindle assembly checkpoint proteins Mad2, Mad3 and APC/C co-activator protein Cdc20), we reveal the molecular basis of MCC-mediated APC/C inhibition and the regulation of MCC assembly. The MCC inhibits the APC/C by obstructing degron recognition sites on Cdc20 (the substrate recruitment subunit of the APC/C) and displacing Cdc20 to disrupt formation of a bipartite D-box receptor with the APC/C subunit Apc10. Mad2, in the closed conformation (C-Mad2), stabilizes the complex by optimally positioning the Mad3 KEN-box degron to bind Cdc20. Mad3 and p31comet (also known as MAD2L1-binding protein) compete for the same C-Mad2 interface, which explains how p31comet disrupts MCC assembly to antagonize the SAC. This study shows how APC/C inhibition is coupled to degron recognition by co-activators.

Suggested Citation

  • William C. H. Chao & Kiran Kulkarni & Ziguo Zhang & Eric H. Kong & David Barford, 2012. "Structure of the mitotic checkpoint complex," Nature, Nature, vol. 484(7393), pages 208-213, April.
  • Handle: RePEc:nat:nature:v:484:y:2012:i:7393:d:10.1038_nature10896
    DOI: 10.1038/nature10896
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature10896
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature10896?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elyse S. Fischer & Conny W. H. Yu & Johannes F. Hevler & Stephen H. McLaughlin & Sarah L. Maslen & Albert J. R. Heck & Stefan M. V. Freund & David Barford, 2022. "Juxtaposition of Bub1 and Cdc20 on phosphorylated Mad1 during catalytic mitotic checkpoint complex assembly," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    2. Christopher Thomas & Benjamin Wetherall & Mark D. Levasseur & Rebecca J. Harris & Scott T. Kerridge & Jonathan M. G. Higgins & Owen R. Davies & Suzanne Madgwick, 2021. "A prometaphase mechanism of securin destruction is essential for meiotic progression in mouse oocytes," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    3. Chu Chen & Valentina Piano & Amal Alex & Simon J. Y. Han & Pim J. Huis in ’t Veld & Babhrubahan Roy & Daniel Fergle & Andrea Musacchio & Ajit P. Joglekar, 2023. "The structural flexibility of MAD1 facilitates the assembly of the Mitotic Checkpoint Complex," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Fridolin Gross & Paolo Bonaiuti & Silke Hauf & Andrea Ciliberto, 2018. "Implications of alternative routes to APC/C inhibition by the mitotic checkpoint complex," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-19, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:484:y:2012:i:7393:d:10.1038_nature10896. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.