IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005878.html
   My bibliography  Save this article

Dynamical compensation and structural identifiability of biological models: Analysis, implications, and reconciliation

Author

Listed:
  • Alejandro F Villaverde
  • Julio R Banga

Abstract

The concept of dynamical compensation has been recently introduced to describe the ability of a biological system to keep its output dynamics unchanged in the face of varying parameters. However, the original definition of dynamical compensation amounts to lack of structural identifiability. This is relevant if model parameters need to be estimated, as is often the case in biological modelling. Care should we taken when using an unidentifiable model to extract biological insight: the estimated values of structurally unidentifiable parameters are meaningless, and model predictions about unmeasured state variables can be wrong. Taking this into account, we explore alternative definitions of dynamical compensation that do not necessarily imply structural unidentifiability. Accordingly, we show different ways in which a model can be made identifiable while exhibiting dynamical compensation. Our analyses enable the use of the new concept of dynamical compensation in the context of parameter identification, and reconcile it with the desirable property of structural identifiability.Author summary: A robust behaviour is a desirable feature in many biological systems. The study of mechanisms capable of maintaining the transient response unchanged despite environmental disturbances has recently motivated the introduction of a new concept: Dynamical Compensation (DC). However, the original definition of DC with respect to a parameter amounts to structural unidentifiability of that parameter, which means that it cannot be estimated by measuring the model output. Since most biological models have unknown parameters that need to be estimated, DC can be considered a negative property for the purpose of model identification. In this paper we reconcile these two conflicting views by proposing a new definition of DC that captures its intended biological meaning (i.e. robustness, which should be a systemic property, intrinsic to the dynamics) while making it distinct from structural unidentifiability (which is a modelling property that depends on decisions made by the modeller, such as the choice of model outputs or unknown parameters, and on experimental constraints). Our definition enables a model to have DC with respect to a structurally identifiable parameter, thus increasing the applicability of the concept.

Suggested Citation

  • Alejandro F Villaverde & Julio R Banga, 2017. "Dynamical compensation and structural identifiability of biological models: Analysis, implications, and reconciliation," PLOS Computational Biology, Public Library of Science, vol. 13(11), pages 1-18, November.
  • Handle: RePEc:plo:pcbi00:1005878
    DOI: 10.1371/journal.pcbi.1005878
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005878
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005878&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005878?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Oana-Teodora Chis & Julio R Banga & Eva Balsa-Canto, 2011. "Structural Identifiability of Systems Biology Models: A Critical Comparison of Methods," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-16, November.
    2. Alejandro F Villaverde & Julio R Banga, 2017. "Dynamical compensation and structural identifiability of biological models: Analysis, implications, and reconciliation," PLOS Computational Biology, Public Library of Science, vol. 13(11), pages 1-18, November.
    3. N. Barkai & S. Leibler, 1997. "Robustness in simple biochemical networks," Nature, Nature, vol. 387(6636), pages 913-917, June.
    4. Nicolette Meshkat & Christine Er-zhen Kuo & Joseph DiStefano III, 2014. "On Finding and Using Identifiable Parameter Combinations in Nonlinear Dynamic Systems Biology Models and COMBOS: A Novel Web Implementation," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-14, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alejandro F Villaverde & Julio R Banga, 2017. "Dynamical compensation and structural identifiability of biological models: Analysis, implications, and reconciliation," PLOS Computational Biology, Public Library of Science, vol. 13(11), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kocięcki, Andrzej & Kolasa, Marcin, 2023. "A solution to the global identification problem in DSGE models," Journal of Econometrics, Elsevier, vol. 236(2).
    2. Önder Kartal & Oliver Ebenhöh, 2009. "Ground State Robustness as an Evolutionary Design Principle in Signaling Networks," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-8, December.
    3. Silke Neumann & Linda Løvdok & Kajetan Bentele & Johannes Meisig & Ekkehard Ullner & Ferencz S Paldy & Victor Sourjik & Markus Kollmann, 2014. "Exponential Signaling Gain at the Receptor Level Enhances Signal-to-Noise Ratio in Bacterial Chemotaxis," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-11, April.
    4. Jae Kyoung Kim & Trachette L Jackson, 2013. "Mechanisms That Enhance Sustainability of p53 Pulses," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-11, June.
    5. Junjie Luo & Jun Wang & Ting Martin Ma & Zhirong Sun, 2010. "Reverse Engineering of Bacterial Chemotaxis Pathway via Frequency Domain Analysis," PLOS ONE, Public Library of Science, vol. 5(3), pages 1-8, March.
    6. Adam Mahdi & Nicolette Meshkat & Seth Sullivant, 2014. "Structural Identifiability of Viscoelastic Mechanical Systems," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-10, February.
    7. Jinlong Yuan & Lei Wang & Xu Zhang & Enmin Feng & Hongchao Yin & Zhilong Xiu, 2015. "Parameter identification for a nonlinear enzyme-catalytic dynamic system with time-delays," Journal of Global Optimization, Springer, vol. 62(4), pages 791-810, August.
    8. Miri Adler & Avi Mayo & Uri Alon, 2014. "Logarithmic and Power Law Input-Output Relations in Sensory Systems with Fold-Change Detection," PLOS Computational Biology, Public Library of Science, vol. 10(8), pages 1-14, August.
    9. David A Sivak & Matt Thomson, 2014. "Environmental Statistics and Optimal Regulation," PLOS Computational Biology, Public Library of Science, vol. 10(9), pages 1-12, September.
    10. Deyan Luan & Michael Zai & Jeffrey D Varner, 2007. "Computationally Derived Points of Fragility of a Human Cascade Are Consistent with Current Therapeutic Strategies," PLOS Computational Biology, Public Library of Science, vol. 3(7), pages 1-13, July.
    11. Masud M A & Md Hamidul Islam & Khondaker A. Mamun & Byul Nim Kim & Sangil Kim, 2020. "COVID-19 Transmission: Bangladesh Perspective," Mathematics, MDPI, vol. 8(10), pages 1-19, October.
    12. Jasmin Fisher & Nir Piterman & Alex Hajnal & Thomas A Henzinger, 2007. "Predictive Modeling of Signaling Crosstalk during C. elegans Vulval Development," PLOS Computational Biology, Public Library of Science, vol. 3(5), pages 1-12, May.
    13. Jalili, Mahdi, 2011. "Error and attack tolerance of small-worldness in complex networks," Journal of Informetrics, Elsevier, vol. 5(3), pages 422-430.
    14. Kirstin Meyer & Nicholas C. Lammers & Lukasz J. Bugaj & Hernan G. Garcia & Orion D. Weiner, 2023. "Optogenetic control of YAP reveals a dynamic communication code for stem cell fate and proliferation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    15. Masatoshi Nishikawa & Tatsuo Shibata, 2010. "Nonadaptive Fluctuation in an Adaptive Sensory System: Bacterial Chemoreceptor," PLOS ONE, Public Library of Science, vol. 5(6), pages 1-12, June.
    16. Gabriele Micali & Gerardo Aquino & David M Richards & Robert G Endres, 2015. "Accurate Encoding and Decoding by Single Cells: Amplitude Versus Frequency Modulation," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-21, June.
    17. Zeina Shreif & Vipul Periwal, 2014. "A Network Characteristic That Correlates Environmental and Genetic Robustness," PLOS Computational Biology, Public Library of Science, vol. 10(2), pages 1-23, February.
    18. Alessandro Romanel & Lars Juhl Jensen & Luca Cardelli & Attila Csikász-Nagy, 2012. "Transcriptional Regulation Is a Major Controller of Cell Cycle Transition Dynamics," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-9, January.
    19. Diana Clausznitzer & Olga Oleksiuk & Linda Løvdok & Victor Sourjik & Robert G Endres, 2010. "Chemotactic Response and Adaptation Dynamics in Escherichia coli," PLOS Computational Biology, Public Library of Science, vol. 6(5), pages 1-11, May.
    20. Alejandro F Villaverde & Antonio Barreiro & Antonis Papachristodoulou, 2016. "Structural Identifiability of Dynamic Systems Biology Models," PLOS Computational Biology, Public Library of Science, vol. 12(10), pages 1-22, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.