IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005674.html
   My bibliography  Save this article

Noise correlations in the human brain and their impact on pattern classification

Author

Listed:
  • Vikranth R Bejjanki
  • Rava Azeredo da Silveira
  • Jonathan D Cohen
  • Nicholas B Turk-Browne

Abstract

Multivariate decoding methods, such as multivoxel pattern analysis (MVPA), are highly effective at extracting information from brain imaging data. Yet, the precise nature of the information that MVPA draws upon remains controversial. Most current theories emphasize the enhanced sensitivity imparted by aggregating across voxels that have mixed and weak selectivity. However, beyond the selectivity of individual voxels, neural variability is correlated across voxels, and such noise correlations may contribute importantly to accurate decoding. Indeed, a recent computational theory proposed that noise correlations enhance multivariate decoding from heterogeneous neural populations. Here we extend this theory from the scale of neurons to functional magnetic resonance imaging (fMRI) and show that noise correlations between heterogeneous populations of voxels (i.e., voxels selective for different stimulus variables) contribute to the success of MVPA. Specifically, decoding performance is enhanced when voxels with high vs. low noise correlations (measured during rest or in the background of the task) are selected during classifier training. Conversely, voxels that are strongly selective for one class in a GLM or that receive high classification weights in MVPA tend to exhibit high noise correlations with voxels selective for the other class being discriminated against. Furthermore, we use simulations to show that this is a general property of fMRI data and that selectivity and noise correlations can have distinguishable influences on decoding. Taken together, our findings demonstrate that if there is signal in the data, the resulting above-chance classification accuracy is modulated by the magnitude of noise correlations.Author summary: A central challenge in cognitive neuroscience is decoding mental representations from patterns of brain activity. With functional magnetic resonance imaging (fMRI), multivariate decoding methods like multivoxel pattern analysis (MVPA) have produced numerous discoveries about the brain. However, what information these methods draw upon remains the subject of debate. Typically, each voxel is thought to contribute information through its selectivity (i.e., how differently it responds to the classes being decoded), with improved sensitivity reflecting the aggregation of selectivity across voxels. We show that this interpretation downplays an important factor: MVPA is also highly attuned to noise correlations between voxels with opposite selectivity. Across several analyses of an fMRI dataset, we demonstrate a positive relationship between the magnitude of noise correlations and multivariate decoding performance. Indeed, voxels more selective for one class, or heavily weighted in MVPA, tend to be more strongly correlated with voxels selective for the opposite class. Furthermore, using a model to simulate different levels of selectivity and noise correlations, we find that the benefit of noise correlations for decoding is a general property of fMRI data. These findings help elucidate the computational underpinnings of multivariate decoding in cognitive neuroscience and provide insight into the nature of neural representations.

Suggested Citation

  • Vikranth R Bejjanki & Rava Azeredo da Silveira & Jonathan D Cohen & Nicholas B Turk-Browne, 2017. "Noise correlations in the human brain and their impact on pattern classification," PLOS Computational Biology, Public Library of Science, vol. 13(8), pages 1-23, August.
  • Handle: RePEc:plo:pcbi00:1005674
    DOI: 10.1371/journal.pcbi.1005674
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005674
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005674&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005674?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rava Azeredo da Silveira & Michael J Berry II, 2014. "High-Fidelity Coding with Correlated Neurons," PLOS Computational Biology, Public Library of Science, vol. 10(11), pages 1-25, November.
    2. Diego A. Gutnisky & Valentin Dragoi, 2008. "Adaptive coding of visual information in neural populations," Nature, Nature, vol. 452(7184), pages 220-224, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ru-Yuan Zhang & Xue-Xin Wei & Kendrick Kay, 2020. "Understanding multivariate brain activity: Evaluating the effect of voxelwise noise correlations on population codes in functional magnetic resonance imaging," PLOS Computational Biology, Public Library of Science, vol. 16(8), pages 1-29, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ashok Litwin-Kumar & Anne-Marie M Oswald & Nathaniel N Urban & Brent Doiron, 2011. "Balanced Synaptic Input Shapes the Correlation between Neural Spike Trains," PLOS Computational Biology, Public Library of Science, vol. 7(12), pages 1-14, December.
    2. Mark L Ioffe & Michael J Berry II, 2017. "The structured ‘low temperature’ phase of the retinal population code," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-31, October.
    3. Wensheng Sun & Dennis L Barbour, 2017. "Rate, not selectivity, determines neuronal population coding accuracy in auditory cortex," PLOS Biology, Public Library of Science, vol. 15(11), pages 1-22, November.
    4. Jason S Prentice & Olivier Marre & Mark L Ioffe & Adrianna R Loback & Gašper Tkačik & Michael J Berry II, 2016. "Error-Robust Modes of the Retinal Population Code," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-32, November.
    5. Sunny Nigam & Russell Milton & Sorin Pojoga & Valentin Dragoi, 2023. "Adaptive coding across visual features during free-viewing and fixation conditions," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Jerome Carriot & Graham McAllister & Hamed Hooshangnejad & Isabelle Mackrous & Kathleen E. Cullen & Maurice J. Chacron, 2022. "Sensory adaptation mediates efficient and unambiguous encoding of natural stimuli by vestibular thalamocortical pathways," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Joel Zylberberg & Alexandre Pouget & Peter E Latham & Eric Shea-Brown, 2017. "Robust information propagation through noisy neural circuits," PLOS Computational Biology, Public Library of Science, vol. 13(4), pages 1-35, April.
    8. Ru-Yuan Zhang & Xue-Xin Wei & Kendrick Kay, 2020. "Understanding multivariate brain activity: Evaluating the effect of voxelwise noise correlations on population codes in functional magnetic resonance imaging," PLOS Computational Biology, Public Library of Science, vol. 16(8), pages 1-29, August.
    9. Geoffrey Terral & Evan Harrell & Gabriel Lepousez & Yohan Wards & Dinghuang Huang & Tiphaine Dolique & Giulio Casali & Antoine Nissant & Pierre-Marie Lledo & Guillaume Ferreira & Giovanni Marsicano & , 2024. "Endogenous cannabinoids in the piriform cortex tune olfactory perception," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    10. Qianli Yang & Edgar Walker & R. James Cotton & Andreas S. Tolias & Xaq Pitkow, 2021. "Revealing nonlinear neural decoding by analyzing choices," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    11. Christopher F. Angeloni & Wiktor Młynarski & Eugenio Piasini & Aaron M. Williams & Katherine C. Wood & Linda Garami & Ann M. Hermundstad & Maria N. Geffen, 2023. "Dynamics of cortical contrast adaptation predict perception of signals in noise," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    12. Takuya Ito & Scott L Brincat & Markus Siegel & Ravi D Mill & Biyu J He & Earl K Miller & Horacio G Rotstein & Michael W Cole, 2020. "Task-evoked activity quenches neural correlations and variability across cortical areas," PLOS Computational Biology, Public Library of Science, vol. 16(8), pages 1-39, August.
    13. Rava Azeredo da Silveira & Michael J Berry II, 2014. "High-Fidelity Coding with Correlated Neurons," PLOS Computational Biology, Public Library of Science, vol. 10(11), pages 1-25, November.
    14. Arno Onken & Valentin Dragoi & Klaus Obermayer, 2012. "A Maximum Entropy Test for Evaluating Higher-Order Correlations in Spike Counts," PLOS Computational Biology, Public Library of Science, vol. 8(6), pages 1-12, June.
    15. Elaine Tring & Mario Dipoppa & Dario L. Ringach, 2023. "A power law describes the magnitude of adaptation in neural populations of primary visual cortex," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    16. Volker Pernice & Rava Azeredo da Silveira, 2018. "Interpretation of correlated neural variability from models of feed-forward and recurrent circuits," PLOS Computational Biology, Public Library of Science, vol. 14(2), pages 1-26, February.
    17. Andrea K Barreiro & Cheng Ly, 2017. "When do correlations increase with firing rates in recurrent networks?," PLOS Computational Biology, Public Library of Science, vol. 13(4), pages 1-30, April.
    18. Ingmar Kanitscheider & Ruben Coen-Cagli & Adam Kohn & Alexandre Pouget, 2015. "Measuring Fisher Information Accurately in Correlated Neural Populations," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-27, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005674. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.