IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1004218.html
   My bibliography  Save this article

Measuring Fisher Information Accurately in Correlated Neural Populations

Author

Listed:
  • Ingmar Kanitscheider
  • Ruben Coen-Cagli
  • Adam Kohn
  • Alexandre Pouget

Abstract

Neural responses are known to be variable. In order to understand how this neural variability constrains behavioral performance, we need to be able to measure the reliability with which a sensory stimulus is encoded in a given population. However, such measures are challenging for two reasons: First, they must take into account noise correlations which can have a large influence on reliability. Second, they need to be as efficient as possible, since the number of trials available in a set of neural recording is usually limited by experimental constraints. Traditionally, cross-validated decoding has been used as a reliability measure, but it only provides a lower bound on reliability and underestimates reliability substantially in small datasets. We show that, if the number of trials per condition is larger than the number of neurons, there is an alternative, direct estimate of reliability which consistently leads to smaller errors and is much faster to compute. The superior performance of the direct estimator is evident both for simulated data and for neuronal population recordings from macaque primary visual cortex. Furthermore we propose generalizations of the direct estimator which measure changes in stimulus encoding across conditions and the impact of correlations on encoding and decoding, typically denoted by Ishuffle and Idiag respectively.Author Summary: A central problem in systems neuroscience is to understand how the activity of neural populations is mapped onto behavior. Neural responses in sensory areas vary substantially upon repeated presentations of the same stimulus, and this limits the reliability with which two similar stimuli can be discriminated by any read-out of neural activity. Fisher information provides a quantitative measure of the reliability of the sensory representation, and it has been used extensively to analyze neural data. Traditional methods for quantifying Fisher information rely on decoding neural activity; however, optimizing a decoder requires larger amounts of data than available in typical experiments, and as a result decoding-based estimators systematically underestimate information. Here we introduce a novel estimator that can accurately determine information with far less data, and that runs orders of magnitude faster. The estimator is based on analytical calculation, and corrects the bias that arises when estimating information directly from limited data. The analytical guarantee of an unbiased estimator and its computational simplicity will allow experimentalists to compare coding reliability across behavioral conditions and monitor it over time.

Suggested Citation

  • Ingmar Kanitscheider & Ruben Coen-Cagli & Adam Kohn & Alexandre Pouget, 2015. "Measuring Fisher Information Accurately in Correlated Neural Populations," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-27, June.
  • Handle: RePEc:plo:pcbi00:1004218
    DOI: 10.1371/journal.pcbi.1004218
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004218
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004218&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1004218?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Diego A. Gutnisky & Valentin Dragoi, 2008. "Adaptive coding of visual information in neural populations," Nature, Nature, vol. 452(7184), pages 220-224, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ru-Yuan Zhang & Xue-Xin Wei & Kendrick Kay, 2020. "Understanding multivariate brain activity: Evaluating the effect of voxelwise noise correlations on population codes in functional magnetic resonance imaging," PLOS Computational Biology, Public Library of Science, vol. 16(8), pages 1-29, August.
    2. Caroline Haimerl & Douglas A. Ruff & Marlene R. Cohen & Cristina Savin & Eero P. Simoncelli, 2023. "Targeted V1 comodulation supports task-adaptive sensory decisions," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. M. Agustina Frechou & Sunaina S. Martin & Kelsey D. McDermott & Evan A. Huaman & Şölen Gökhan & Wolfgang A. Tomé & Ruben Coen-Cagli & J. Tiago Gonçalves, 2024. "Adult neurogenesis improves spatial information encoding in the mouse hippocampus," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Alexander Anders & Bhaswar Ghosh & Timo Glatter & Victor Sourjik, 2020. "Design of a MAPK signalling cascade balances energetic cost versus accuracy of information transmission," Nature Communications, Nature, vol. 11(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ashok Litwin-Kumar & Anne-Marie M Oswald & Nathaniel N Urban & Brent Doiron, 2011. "Balanced Synaptic Input Shapes the Correlation between Neural Spike Trains," PLOS Computational Biology, Public Library of Science, vol. 7(12), pages 1-14, December.
    2. Wensheng Sun & Dennis L Barbour, 2017. "Rate, not selectivity, determines neuronal population coding accuracy in auditory cortex," PLOS Biology, Public Library of Science, vol. 15(11), pages 1-22, November.
    3. Sunny Nigam & Russell Milton & Sorin Pojoga & Valentin Dragoi, 2023. "Adaptive coding across visual features during free-viewing and fixation conditions," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Jerome Carriot & Graham McAllister & Hamed Hooshangnejad & Isabelle Mackrous & Kathleen E. Cullen & Maurice J. Chacron, 2022. "Sensory adaptation mediates efficient and unambiguous encoding of natural stimuli by vestibular thalamocortical pathways," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Ru-Yuan Zhang & Xue-Xin Wei & Kendrick Kay, 2020. "Understanding multivariate brain activity: Evaluating the effect of voxelwise noise correlations on population codes in functional magnetic resonance imaging," PLOS Computational Biology, Public Library of Science, vol. 16(8), pages 1-29, August.
    6. Geoffrey Terral & Evan Harrell & Gabriel Lepousez & Yohan Wards & Dinghuang Huang & Tiphaine Dolique & Giulio Casali & Antoine Nissant & Pierre-Marie Lledo & Guillaume Ferreira & Giovanni Marsicano & , 2024. "Endogenous cannabinoids in the piriform cortex tune olfactory perception," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    7. Qianli Yang & Edgar Walker & R. James Cotton & Andreas S. Tolias & Xaq Pitkow, 2021. "Revealing nonlinear neural decoding by analyzing choices," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    8. Christopher F. Angeloni & Wiktor Młynarski & Eugenio Piasini & Aaron M. Williams & Katherine C. Wood & Linda Garami & Ann M. Hermundstad & Maria N. Geffen, 2023. "Dynamics of cortical contrast adaptation predict perception of signals in noise," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    9. Rava Azeredo da Silveira & Michael J Berry II, 2014. "High-Fidelity Coding with Correlated Neurons," PLOS Computational Biology, Public Library of Science, vol. 10(11), pages 1-25, November.
    10. Arno Onken & Valentin Dragoi & Klaus Obermayer, 2012. "A Maximum Entropy Test for Evaluating Higher-Order Correlations in Spike Counts," PLOS Computational Biology, Public Library of Science, vol. 8(6), pages 1-12, June.
    11. Elaine Tring & Mario Dipoppa & Dario L. Ringach, 2023. "A power law describes the magnitude of adaptation in neural populations of primary visual cortex," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Vikranth R Bejjanki & Rava Azeredo da Silveira & Jonathan D Cohen & Nicholas B Turk-Browne, 2017. "Noise correlations in the human brain and their impact on pattern classification," PLOS Computational Biology, Public Library of Science, vol. 13(8), pages 1-23, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.