IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005578.html
   My bibliography  Save this article

Robust transmission of rate coding in the inhibitory Purkinje cell to cerebellar nuclei pathway in awake mice

Author

Listed:
  • Samira Abbasi
  • Amber E Hudson
  • Selva K Maran
  • Ying Cao
  • Ataollah Abbasi
  • Detlef H Heck
  • Dieter Jaeger

Abstract

Neural coding through inhibitory projection pathways remains poorly understood. We analyze the transmission properties of the Purkinje cell (PC) to cerebellar nucleus (CN) pathway in a modeling study using a data set recorded in awake mice containing respiratory rate modulation. We find that inhibitory transmission from tonically active PCs can transmit a behavioral rate code with high fidelity. We parameterized the required population code in PC activity and determined that 20% of PC inputs to a full compartmental CN neuron model need to be rate-comodulated for transmission of a rate code. Rate covariance in PC inputs also accounts for the high coefficient of variation in CN spike trains, while the balance between excitation and inhibition determines spike rate and local spike train variability. Overall, our modeling study can fully account for observed spike train properties of cerebellar output in awake mice, and strongly supports rate coding in the cerebellum.Author summary: Detailed computer simulations of biological neurons can make an important contribution to our understanding of how the brain works. In this paper we use such a model of a neuron that represents the output from the cerebellum. We can show that the inhibition this neuron type receives from Purkinje cells in the cerebellar cortex is well suited to pass a detailed time course of movement control to the output of the cerebellum. Importantly we find that this type of coding requires a population of Purkinje cells that pass the same temporal coding of spike rate to the output neurons in the cerebellar nuclei.

Suggested Citation

  • Samira Abbasi & Amber E Hudson & Selva K Maran & Ying Cao & Ataollah Abbasi & Detlef H Heck & Dieter Jaeger, 2017. "Robust transmission of rate coding in the inhibitory Purkinje cell to cerebellar nuclei pathway in awake mice," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-25, June.
  • Handle: RePEc:plo:pcbi00:1005578
    DOI: 10.1371/journal.pcbi.1005578
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005578
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005578&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005578?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Abigail L. Person & Indira M. Raman, 2012. "Purkinje neuron synchrony elicits time-locked spiking in the cerebellar nuclei," Nature, Nature, vol. 481(7382), pages 502-505, January.
    2. Markus Diesmann & Marc-Oliver Gewaltig & Ad Aertsen, 1999. "Stable propagation of synchronous spiking in cortical neural networks," Nature, Nature, vol. 402(6761), pages 529-533, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richard Naud & Wulfram Gerstner, 2012. "Coding and Decoding with Adapting Neurons: A Population Approach to the Peri-Stimulus Time Histogram," PLOS Computational Biology, Public Library of Science, vol. 8(10), pages 1-14, October.
    2. Andrey Molyakov, 2019. "Mathematical Modeling of Neurodynamic Systems- Solving DIS-Tasks Using Massive-Multithread Supercomputers," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 21(5), pages 16159-16162, October.
    3. Emiliano Torre & Carlos Canova & Michael Denker & George Gerstein & Moritz Helias & Sonja Grün, 2016. "ASSET: Analysis of Sequences of Synchronous Events in Massively Parallel Spike Trains," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-34, July.
    4. Hideaki Shimazaki & Shun-ichi Amari & Emery N Brown & Sonja Grün, 2012. "State-Space Analysis of Time-Varying Higher-Order Spike Correlation for Multiple Neural Spike Train Data," PLOS Computational Biology, Public Library of Science, vol. 8(3), pages 1-27, March.
    5. Yao, Chenggui & Ma, Jun & He, Zhiwei & Qian, Yu & Liu, Liping, 2019. "Transmission and detection of biharmonic envelope signal in a feed-forward multilayer neural network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 797-806.
    6. Feng-Sheng Tsai & Yi-Li Shih & Chin-Tzong Pang & Sheng-Yi Hsu, 2019. "Formulation of Pruning Maps with Rhythmic Neural Firing," Mathematics, MDPI, vol. 7(12), pages 1-15, December.
    7. Mizusaki, Beatriz E.P. & Agnes, Everton J. & Erichsen, Rubem & Brunnet, Leonardo G., 2017. "Learning and retrieval behavior in recurrent neural networks with pre-synaptic dependent homeostatic plasticity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 279-286.
    8. Gabriel Koch Ocker & Krešimir Josić & Eric Shea-Brown & Michael A Buice, 2017. "Linking structure and activity in nonlinear spiking networks," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-47, June.
    9. Wu, Yan & Wu, Liqing & Zhu, Yuan & Yi, Ming & Lu, Lulu, 2024. "Enhancing weak signal propagation by intra- and inter-layer global couplings in a feedforward network," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    10. Qin, Ying-Mei & Che, Yan-Qiu & Zhao, Jia, 2018. "Effects of degree distributions on signal propagation in noisy feedforward neural networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 763-774.
    11. Herbert Jaeger & Beatriz Noheda & Wilfred G. Wiel, 2023. "Toward a formal theory for computing machines made out of whatever physics offers," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Kim M. Gruver & Jenny W. Y. Jiao & Eviatar Fields & Sen Song & Per Jesper Sjöström & Alanna J. Watt, 2024. "Structured connectivity in the output of the cerebellar cortex," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. Elliott Capek & Tiago L. Ribeiro & Patrick Kells & Keshav Srinivasan & Stephanie R. Miller & Elias Geist & Mitchell Victor & Ali Vakili & Sinisa Pajevic & Dante R. Chialvo & Dietmar Plenz, 2023. "Parabolic avalanche scaling in the synchronization of cortical cell assemblies," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    14. Tom Tetzlaff & Moritz Helias & Gaute T Einevoll & Markus Diesmann, 2012. "Decorrelation of Neural-Network Activity by Inhibitory Feedback," PLOS Computational Biology, Public Library of Science, vol. 8(8), pages 1-29, August.
    15. Miguel Aguilera & Masanao Igarashi & Hideaki Shimazaki, 2023. "Nonequilibrium thermodynamics of the asymmetric Sherrington-Kirkpatrick model," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    16. Moritz Helias & Tom Tetzlaff & Markus Diesmann, 2014. "The Correlation Structure of Local Neuronal Networks Intrinsically Results from Recurrent Dynamics," PLOS Computational Biology, Public Library of Science, vol. 10(1), pages 1-21, January.
    17. Ding, Qianming & Wu, Yong & Li, Tianyu & Yu, Dong & Jia, Ya, 2023. "Metabolic energy consumption and information transmission of a two-compartment neuron model and its cortical network," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    18. Brot, Hilla & Muchnik, Lev & Goldenberg, Jacob & Louzoun, Yoram, 2012. "Feedback between node and network dynamics can produce real-world network properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6645-6654.
    19. Omid A. Zobeiri & Kathleen E. Cullen, 2024. "Cerebellar Purkinje cells combine sensory and motor information to predict the sensory consequences of active self-motion in macaques," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    20. Naveen Sendhilnathan & Andreea C. Bostan & Peter L. Strick & Michael E. Goldberg, 2024. "A cerebro-cerebellar network for learning visuomotor associations," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.