IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37976-x.html
   My bibliography  Save this article

Parabolic avalanche scaling in the synchronization of cortical cell assemblies

Author

Listed:
  • Elliott Capek

    (National Institute of Mental Health)

  • Tiago L. Ribeiro

    (National Institute of Mental Health)

  • Patrick Kells

    (National Institute of Mental Health)

  • Keshav Srinivasan

    (National Institute of Mental Health
    University of Maryland)

  • Stephanie R. Miller

    (National Institute of Mental Health)

  • Elias Geist

    (National Institute of Mental Health)

  • Mitchell Victor

    (National Institute of Mental Health)

  • Ali Vakili

    (National Institute of Mental Health)

  • Sinisa Pajevic

    (National Institute of Mental Health)

  • Dante R. Chialvo

    (CEMSC3, Escuela de Ciencia y Tecnologia, UNSAM, San Martín)

  • Dietmar Plenz

    (National Institute of Mental Health)

Abstract

Neurons in the cerebral cortex fire coincident action potentials during ongoing activity and in response to sensory inputs. These synchronized cell assemblies are fundamental to cortex function, yet basic dynamical aspects of their size and duration are largely unknown. Using 2-photon imaging of neurons in the superficial cortex of awake mice, we show that synchronized cell assemblies organize as scale-invariant avalanches that quadratically grow with duration. The quadratic avalanche scaling was only found for correlated neurons, required temporal coarse-graining to compensate for spatial subsampling of the imaged cortex, and suggested cortical dynamics to be critical as demonstrated in simulations of balanced E/I-networks. The corresponding time course of an inverted parabola with exponent of χ = 2 described cortical avalanches of coincident firing for up to 5 s duration over an area of 1 mm2. These parabolic avalanches maximized temporal complexity in the ongoing activity of prefrontal and somatosensory cortex and in visual responses of primary visual cortex. Our results identify a scale-invariant temporal order in the synchronization of highly diverse cortical cell assemblies in the form of parabolic avalanches.

Suggested Citation

  • Elliott Capek & Tiago L. Ribeiro & Patrick Kells & Keshav Srinivasan & Stephanie R. Miller & Elias Geist & Mitchell Victor & Ali Vakili & Sinisa Pajevic & Dante R. Chialvo & Dietmar Plenz, 2023. "Parabolic avalanche scaling in the synchronization of cortical cell assemblies," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37976-x
    DOI: 10.1038/s41467-023-37976-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37976-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37976-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Guozhang Chen & Pulin Gong, 2019. "Computing by modulating spontaneous cortical activity patterns as a mechanism of active visual processing," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
    2. Kevin K. Sit & Michael J. Goard, 2020. "Distributed and retinotopically asymmetric processing of coherent motion in mouse visual cortex," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    3. Markus Diesmann & Marc-Oliver Gewaltig & Ad Aertsen, 1999. "Stable propagation of synchronous spiking in cortical neural networks," Nature, Nature, vol. 402(6761), pages 529-533, December.
    4. Shan Yu & Andreas Klaus & Hongdian Yang & Dietmar Plenz, 2014. "Scale-Invariant Neuronal Avalanche Dynamics and the Cut-Off in Size Distributions," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-12, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Federico Bolaños & Javier G. Orlandi & Ryo Aoki & Akshay V. Jagadeesh & Justin L. Gardner & Andrea Benucci, 2024. "Efficient coding of natural images in the mouse visual cortex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Yang Qi & Pulin Gong, 2022. "Fractional neural sampling as a theory of spatiotemporal probabilistic computations in neural circuits," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    3. Richard Naud & Wulfram Gerstner, 2012. "Coding and Decoding with Adapting Neurons: A Population Approach to the Peri-Stimulus Time Histogram," PLOS Computational Biology, Public Library of Science, vol. 8(10), pages 1-14, October.
    4. Andrey Molyakov, 2019. "Mathematical Modeling of Neurodynamic Systems- Solving DIS-Tasks Using Massive-Multithread Supercomputers," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 21(5), pages 16159-16162, October.
    5. Emiliano Torre & Carlos Canova & Michael Denker & George Gerstein & Moritz Helias & Sonja Grün, 2016. "ASSET: Analysis of Sequences of Synchronous Events in Massively Parallel Spike Trains," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-34, July.
    6. Hideaki Shimazaki & Shun-ichi Amari & Emery N Brown & Sonja Grün, 2012. "State-Space Analysis of Time-Varying Higher-Order Spike Correlation for Multiple Neural Spike Train Data," PLOS Computational Biology, Public Library of Science, vol. 8(3), pages 1-27, March.
    7. Yao, Chenggui & Ma, Jun & He, Zhiwei & Qian, Yu & Liu, Liping, 2019. "Transmission and detection of biharmonic envelope signal in a feed-forward multilayer neural network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 797-806.
    8. Feng-Sheng Tsai & Yi-Li Shih & Chin-Tzong Pang & Sheng-Yi Hsu, 2019. "Formulation of Pruning Maps with Rhythmic Neural Firing," Mathematics, MDPI, vol. 7(12), pages 1-15, December.
    9. Mizusaki, Beatriz E.P. & Agnes, Everton J. & Erichsen, Rubem & Brunnet, Leonardo G., 2017. "Learning and retrieval behavior in recurrent neural networks with pre-synaptic dependent homeostatic plasticity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 279-286.
    10. Gabriel Koch Ocker & Krešimir Josić & Eric Shea-Brown & Michael A Buice, 2017. "Linking structure and activity in nonlinear spiking networks," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-47, June.
    11. Wu, Yan & Wu, Liqing & Zhu, Yuan & Yi, Ming & Lu, Lulu, 2024. "Enhancing weak signal propagation by intra- and inter-layer global couplings in a feedforward network," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    12. Qin, Ying-Mei & Che, Yan-Qiu & Zhao, Jia, 2018. "Effects of degree distributions on signal propagation in noisy feedforward neural networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 763-774.
    13. Herbert Jaeger & Beatriz Noheda & Wilfred G. Wiel, 2023. "Toward a formal theory for computing machines made out of whatever physics offers," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    14. Tom Tetzlaff & Moritz Helias & Gaute T Einevoll & Markus Diesmann, 2012. "Decorrelation of Neural-Network Activity by Inhibitory Feedback," PLOS Computational Biology, Public Library of Science, vol. 8(8), pages 1-29, August.
    15. Miguel Aguilera & Masanao Igarashi & Hideaki Shimazaki, 2023. "Nonequilibrium thermodynamics of the asymmetric Sherrington-Kirkpatrick model," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    16. Moritz Helias & Tom Tetzlaff & Markus Diesmann, 2014. "The Correlation Structure of Local Neuronal Networks Intrinsically Results from Recurrent Dynamics," PLOS Computational Biology, Public Library of Science, vol. 10(1), pages 1-21, January.
    17. Samira Abbasi & Amber E Hudson & Selva K Maran & Ying Cao & Ataollah Abbasi & Detlef H Heck & Dieter Jaeger, 2017. "Robust transmission of rate coding in the inhibitory Purkinje cell to cerebellar nuclei pathway in awake mice," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-25, June.
    18. Ding, Qianming & Wu, Yong & Li, Tianyu & Yu, Dong & Jia, Ya, 2023. "Metabolic energy consumption and information transmission of a two-compartment neuron model and its cortical network," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    19. Brot, Hilla & Muchnik, Lev & Goldenberg, Jacob & Louzoun, Yoram, 2012. "Feedback between node and network dynamics can produce real-world network properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6645-6654.
    20. Ortega, Diego & Rodríguez-Laguna, Javier & Korutcheva, Elka, 2022. "Segregation in spatially structured cities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37976-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.