IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005521.html
   My bibliography  Save this article

Epidemiological and economic impact of pandemic influenza in Chicago: Priorities for vaccine interventions

Author

Listed:
  • Nargesalsadat Dorratoltaj
  • Achla Marathe
  • Bryan L Lewis
  • Samarth Swarup
  • Stephen G Eubank
  • Kaja M Abbas

Abstract

The study objective is to estimate the epidemiological and economic impact of vaccine interventions during influenza pandemics in Chicago, and assist in vaccine intervention priorities. Scenarios of delay in vaccine introduction with limited vaccine efficacy and limited supplies are not unlikely in future influenza pandemics, as in the 2009 H1N1 influenza pandemic. We simulated influenza pandemics in Chicago using agent-based transmission dynamic modeling. Population was distributed among high-risk and non-high risk among 0–19, 20–64 and 65+ years subpopulations. Different attack rate scenarios for catastrophic (30.15%), strong (21.96%), and moderate (11.73%) influenza pandemics were compared against vaccine intervention scenarios, at 40% coverage, 40% efficacy, and unit cost of $28.62. Sensitivity analysis for vaccine compliance, vaccine efficacy and vaccine start date was also conducted. Vaccine prioritization criteria include risk of death, total deaths, net benefits, and return on investment. The risk of death is the highest among the high-risk 65+ years subpopulation in the catastrophic influenza pandemic, and highest among the high-risk 0–19 years subpopulation in the strong and moderate influenza pandemics. The proportion of total deaths and net benefits are the highest among the high-risk 20–64 years subpopulation in the catastrophic, strong and moderate influenza pandemics. The return on investment is the highest in the high-risk 0–19 years subpopulation in the catastrophic, strong and moderate influenza pandemics. Based on risk of death and return on investment, high-risk groups of the three age group subpopulations can be prioritized for vaccination, and the vaccine interventions are cost saving for all age and risk groups. The attack rates among the children are higher than among the adults and seniors in the catastrophic, strong, and moderate influenza pandemic scenarios, due to their larger social contact network and homophilous interactions in school. Based on return on investment and higher attack rates among children, we recommend prioritizing children (0–19 years) and seniors (65+ years) after high-risk groups for influenza vaccination during times of limited vaccine supplies. Based on risk of death, we recommend prioritizing seniors (65+ years) after high-risk groups for influenza vaccination during times of limited vaccine supplies.Author summary: The study objective is to estimate the epidemiological and economic impact of vaccine interventions during an influenza pandemic in Chicago, to assist in vaccine intervention priorities. Population dynamics play an important role in influenza pandemic planning and response. To optimally allocate limited vaccine resources, it is important to inform decision makers and public health officials about both the direct benefit among vaccinated population and the indirect benefit among non-vaccinated population. This study adds to the evidence of prior studies by using a detailed agent-based model for estimating the direct and indirect benefits of epidemiological and economic impact of vaccine-based interventions. This study can be extended to analyze for a range of vaccine compliance and efficacy values at different attack rates of influenza pandemics in different rural and urban areas of the United States and at the country level, to infer objective prioritization criteria for influenza vaccine interventions among different risk and age groups.

Suggested Citation

  • Nargesalsadat Dorratoltaj & Achla Marathe & Bryan L Lewis & Samarth Swarup & Stephen G Eubank & Kaja M Abbas, 2017. "Epidemiological and economic impact of pandemic influenza in Chicago: Priorities for vaccine interventions," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-25, June.
  • Handle: RePEc:plo:pcbi00:1005521
    DOI: 10.1371/journal.pcbi.1005521
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005521
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005521&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005521?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Beckman, Richard J. & Baggerly, Keith A. & McKay, Michael D., 1996. "Creating synthetic baseline populations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 30(6), pages 415-429, November.
    2. Neil M. Ferguson & Derek A. T. Cummings & Christophe Fraser & James C. Cajka & Philip C. Cooley & Donald S. Burke, 2006. "Strategies for mitigating an influenza pandemic," Nature, Nature, vol. 442(7101), pages 448-452, July.
    3. Lisa A Prosser & Tara A Lavelle & Anthony E Fiore & Carolyn B Bridges & Carrie Reed & Seema Jain & Kelly M Dunham & Martin I Meltzer, 2011. "Cost-Effectiveness of 2009 Pandemic Influenza A(H1N1) Vaccination in the United States," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-11, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stephanie Lange & Claire-Marie Altrock & Emily Gossmann & Jörg M. Fegert & Andreas Jud, 2022. "COVID-19—What Price Do Children Pay? An Analysis of Economic and Social Policy Factors," IJERPH, MDPI, vol. 19(13), pages 1-15, June.
    2. Clarke, Lorcan, 2020. "An introduction to economic studies, health emergencies, and COVID-19," LSE Research Online Documents on Economics 105051, London School of Economics and Political Science, LSE Library.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Susan M. Rogers & James Rineer & Matthew D. Scruggs & William D. Wheaton & Phillip C. Cooley & Douglas J. Roberts & Diane K. Wagener, 2014. "A Geospatial Dynamic Microsimulation Model for Household Population Projections," International Journal of Microsimulation, International Microsimulation Association, vol. 7(2), pages 119-146.
    2. Catalina Amuedo-Dorantes & Neeraj Kaushal & Ashley N. Muchow, 2021. "Timing of social distancing policies and COVID-19 mortality: county-level evidence from the U.S," Journal of Population Economics, Springer;European Society for Population Economics, vol. 34(4), pages 1445-1472, October.
    3. Andrew G. Atkeson & Karen A. Kopecky & Tao Zha, 2024. "Four Stylized Facts About Covid‐19," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 65(1), pages 3-42, February.
    4. Victor W. Chu & Raymond K. Wong & Chi-Hung Chi & Wei Zhou & Ivan Ho, 2017. "The design of a cloud-based tracker platform based on system-of-systems service architecture," Information Systems Frontiers, Springer, vol. 19(6), pages 1283-1299, December.
    5. Khan, Hasib & Ibrahim, Muhammad & Abdel-Aty, Abdel-Haleem & Khashan, M. Motawi & Khan, Farhat Ali & Khan, Aziz, 2021. "A fractional order Covid-19 epidemic model with Mittag-Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    6. Wouter Vermeer & Otto Koppius & Peter Vervest, 2018. "The Radiation-Transmission-Reception (RTR) model of propagation: Implications for the effectiveness of network interventions," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-21, December.
    7. Phillip Stroud & Sara Del Valle & Stephen Sydoriak & Jane Riese & Susan Mniszewski, 2007. "Spatial Dynamics of Pandemic Influenza in a Massive Artificial Society," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 10(4), pages 1-9.
    8. Caixia Wang & Huijie Li, 2022. "Public Compliance Matters in Evidence-Based Public Health Policy: Evidence from Evaluating Social Distancing in the First Wave of COVID-19," IJERPH, MDPI, vol. 19(7), pages 1-13, March.
    9. Christopher L Burdett & Brian R Kraus & Sarah J Garza & Ryan S Miller & Kathe E Bjork, 2015. "Simulating the Distribution of Individual Livestock Farms and Their Populations in the United States: An Example Using Domestic Swine (Sus scrofa domesticus) Farms," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-21, November.
    10. Krista Ruffini & Aaron Sojourner & Abigail Wozniak, 2021. "Who'S In And Who'S Out Under Workplace Covid Symptom Screening?," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 40(2), pages 614-641, March.
    11. Lin Ma & Gil Shapira & Damien de Walque & Quy‐Toan Do & Jed Friedman & Andrei A. Levchenko, 2022. "The Intergenerational Mortality Trade‐Off Of Covid‐19 Lockdown Policies," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(3), pages 1427-1468, August.
    12. Sean F. Reardon & Lindsay Fox & Joseph Townsend, 2015. "Neighborhood Income Composition by Household Race and Income, 1990–2009," The ANNALS of the American Academy of Political and Social Science, , vol. 660(1), pages 78-97, July.
    13. Philipp Ager & Katherine Eriksson & Ezra Karger & Peter Nencka & Melissa A. Thomasson, 2024. "School Closures during the 1918 Flu Pandemic," The Review of Economics and Statistics, MIT Press, vol. 106(1), pages 266-276, January.
    14. Christopher Bronk Ramsey, 2020. "Human agency and infection rates: Implications for social distancing during epidemics," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-17, December.
    15. Juste Raimbault, 2019. "Second-order control of complex systems with correlated synthetic data," Post-Print halshs-02376968, HAL.
    16. Jérôme Adda, 2016. "Economic Activity and the Spread of Viral Diseases: Evidence from High Frequency Data," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(2), pages 891-941.
    17. Peter Caley & Niels G Becker & David J Philp, 2007. "The Waiting Time for Inter-Country Spread of Pandemic Influenza," PLOS ONE, Public Library of Science, vol. 2(1), pages 1-8, January.
    18. Ming Yi & Achla Marathe, 2013. "Policy Trap and Optimal Subsidization Policy under Limited Supply of Vaccines," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-9, July.
    19. Brotherhood, Luiz & Jerbashian, Vahagn, 2023. "Firm behavior during an epidemic," Journal of Economic Dynamics and Control, Elsevier, vol. 147(C).
    20. Eva K. Lee & Ferdinand Pietz & Bernard Benecke & Jacquelyn Mason & Greg Burel, 2013. "Advancing Public Health and Medical Preparedness with Operations Research," Interfaces, INFORMS, vol. 43(1), pages 79-98, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005521. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.