IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005447.html
   My bibliography  Save this article

Dynamic compensation, parameter identifiability, and equivariances

Author

Listed:
  • Eduardo D Sontag

Abstract

A recent paper by Karin et al. introduced a mathematical notion called dynamical compensation (DC) of biological circuits. DC was shown to play an important role in glucose homeostasis as well as other key physiological regulatory mechanisms. Karin et al. went on to provide a sufficient condition to test whether a given system has the DC property. Here, we show how DC can be formulated in terms of a well-known concept in systems biology, statistics, and control theory—that of parameter structural non-identifiability. Viewing DC as a parameter identification problem enables one to take advantage of powerful theoretical and computational tools to test a system for DC. We obtain as a special case the sufficient criterion discussed by Karin et al. We also draw connections to system equivalence and to the fold-change detection property.Author summary: A recently introduced mathematical notion called dynamical compensation of biological circuits was shown to play an important role in glucose homeostasis and other key physiological regulatory mechanisms. This paper explains how dynamical compensation can be formulated in terms of a well-known concept in systems biology, statistics, and control theory—that of parameter structural non-identifiability. Viewing dynamical compensation as a parameter identification problem enables one to take advantage of powerful theoretical and computational tools to test a system for dynamical compensation. As a special case, one obtains the sufficient criterion for dynamical compensation. The paper also draws connections to system equivalence and to the fold-change detection property. The non-identifiability characterization brings up an interesting contrast in the way in which one thinks of these properties in the two fields. From the point of view of robustness of behavior, one wishes that parameters do not influence much the response of a system. On the other hand, from the systems and parameter identification point of view, the more that a parameter affects behavior, the easier it is to estimate it, and poor sensitivity is taken as an indication of a poorly parametrized model.

Suggested Citation

  • Eduardo D Sontag, 2017. "Dynamic compensation, parameter identifiability, and equivariances," PLOS Computational Biology, Public Library of Science, vol. 13(4), pages 1-17, April.
  • Handle: RePEc:plo:pcbi00:1005447
    DOI: 10.1371/journal.pcbi.1005447
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005447
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005447&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005447?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Adel Dayarian & Madalena Chaves & Eduardo D Sontag & Anirvan M Sengupta, 2009. "Shape, Size, and Robustness: Feasible Regions in the Parameter Space of Biochemical Networks," PLOS Computational Biology, Public Library of Science, vol. 5(1), pages 1-12, January.
    2. Ryan N Gutenkunst & Joshua J Waterfall & Fergal P Casey & Kevin S Brown & Christopher R Myers & James P Sethna, 2007. "Universally Sloppy Parameter Sensitivities in Systems Biology Models," PLOS Computational Biology, Public Library of Science, vol. 3(10), pages 1-8, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandre Donzé & Eric Fanchon & Lucie Martine Gattepaille & Oded Maler & Philippe Tracqui, 2011. "Robustness Analysis and Behavior Discrimination in Enzymatic Reaction Networks," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-16, September.
    2. Marc Hafner & Heinz Koeppl & Martin Hasler & Andreas Wagner, 2009. "‘Glocal’ Robustness Analysis and Model Discrimination for Circadian Oscillators," PLOS Computational Biology, Public Library of Science, vol. 5(10), pages 1-10, October.
    3. Samuel Bandara & Johannes P Schlöder & Roland Eils & Hans Georg Bock & Tobias Meyer, 2009. "Optimal Experimental Design for Parameter Estimation of a Cell Signaling Model," PLOS Computational Biology, Public Library of Science, vol. 5(11), pages 1-12, November.
    4. Eberhard O Voit, 2019. "Perspective: Dimensions of the scientific method," PLOS Computational Biology, Public Library of Science, vol. 15(9), pages 1-14, September.
    5. Adel Dayarian & Madalena Chaves & Eduardo D Sontag & Anirvan M Sengupta, 2009. "Shape, Size, and Robustness: Feasible Regions in the Parameter Space of Biochemical Networks," PLOS Computational Biology, Public Library of Science, vol. 5(1), pages 1-12, January.
    6. Brian K Mannakee & Ryan N Gutenkunst, 2016. "Selection on Network Dynamics Drives Differential Rates of Protein Domain Evolution," PLOS Genetics, Public Library of Science, vol. 12(7), pages 1-20, July.
    7. Chen, Yu & Yu, Hui & Liu, Chengjie & Xie, Jin & Han, Jun & Dai, Houde, 2024. "Synergistic fusion of physical modeling and data-driven approaches for parameter inference to enzymatic biodiesel production system," Applied Energy, Elsevier, vol. 373(C).
    8. Amrita X Sarkar & Eric A Sobie, 2010. "Regression Analysis for Constraining Free Parameters in Electrophysiological Models of Cardiac Cells," PLOS Computational Biology, Public Library of Science, vol. 6(9), pages 1-11, September.
    9. Hongwei Shao & Tao Peng & Zhiwei Ji & Jing Su & Xiaobo Zhou, 2013. "Systematically Studying Kinase Inhibitor Induced Signaling Network Signatures by Integrating Both Therapeutic and Side Effects," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-16, December.
    10. Alireza Yazdani & Lu Lu & Maziar Raissi & George Em Karniadakis, 2020. "Systems biology informed deep learning for inferring parameters and hidden dynamics," PLOS Computational Biology, Public Library of Science, vol. 16(11), pages 1-19, November.
    11. Fridtjof Brauns & Leila Iñigo de la Cruz & Werner K.-G. Daalman & Ilse Bruin & Jacob Halatek & Liedewij Laan & Erwin Frey, 2023. "Redundancy and the role of protein copy numbers in the cell polarization machinery of budding yeast," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    12. Eberhard O Voit & Harald A Martens & Stig W Omholt, 2015. "150 Years of the Mass Action Law," PLOS Computational Biology, Public Library of Science, vol. 11(1), pages 1-7, January.
    13. Céline Christiansen-Jucht & Kamil Erguler & Chee Yan Shek & María-Gloria Basáñez & Paul E. Parham, 2015. "Modelling Anopheles gambiae s.s. Population Dynamics with Temperature- and Age-Dependent Survival," IJERPH, MDPI, vol. 12(6), pages 1-31, May.
    14. Gabriele Lillacci & Mustafa Khammash, 2010. "Parameter Estimation and Model Selection in Computational Biology," PLOS Computational Biology, Public Library of Science, vol. 6(3), pages 1-17, March.
    15. Andrew White & Malachi Tolman & Howard D Thames & Hubert Rodney Withers & Kathy A Mason & Mark K Transtrum, 2016. "The Limitations of Model-Based Experimental Design and Parameter Estimation in Sloppy Systems," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-26, December.
    16. Diego Fernández Slezak & Cecilia Suárez & Guillermo A Cecchi & Guillermo Marshall & Gustavo Stolovitzky, 2010. "When the Optimal Is Not the Best: Parameter Estimation in Complex Biological Models," PLOS ONE, Public Library of Science, vol. 5(10), pages 1-10, October.
    17. Elba Raimúndez & Simone Keller & Gwen Zwingenberger & Karolin Ebert & Sabine Hug & Fabian J Theis & Dieter Maier & Birgit Luber & Jan Hasenauer, 2020. "Model-based analysis of response and resistance factors of cetuximab treatment in gastric cancer cell lines," PLOS Computational Biology, Public Library of Science, vol. 16(3), pages 1-21, March.
    18. Joseph D Taylor & Samuel Winnall & Alain Nogaret, 2020. "Estimation of neuron parameters from imperfect observations," PLOS Computational Biology, Public Library of Science, vol. 16(7), pages 1-22, July.
    19. Xinxian Shao & Andrew Mugler & Justin Kim & Ha Jun Jeong & Bruce R Levin & Ilya Nemenman, 2017. "Growth of bacteria in 3-d colonies," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-19, July.
    20. Karl Fogelmark & Carl Troein, 2014. "Rethinking Transcriptional Activation in the Arabidopsis Circadian Clock," PLOS Computational Biology, Public Library of Science, vol. 10(7), pages 1-12, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.