IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1000495.html
   My bibliography  Save this article

A Structured Model of Video Reproduces Primary Visual Cortical Organisation

Author

Listed:
  • Pietro Berkes
  • Richard E Turner
  • Maneesh Sahani

Abstract

The visual system must learn to infer the presence of objects and features in the world from the images it encounters, and as such it must, either implicitly or explicitly, model the way these elements interact to create the image. Do the response properties of cells in the mammalian visual system reflect this constraint? To address this question, we constructed a probabilistic model in which the identity and attributes of simple visual elements were represented explicitly and learnt the parameters of this model from unparsed, natural video sequences. After learning, the behaviour and grouping of variables in the probabilistic model corresponded closely to functional and anatomical properties of simple and complex cells in the primary visual cortex (V1). In particular, feature identity variables were activated in a way that resembled the activity of complex cells, while feature attribute variables responded much like simple cells. Furthermore, the grouping of the attributes within the model closely parallelled the reported anatomical grouping of simple cells in cat V1. Thus, this generative model makes explicit an interpretation of complex and simple cells as elements in the segmentation of a visual scene into basic independent features, along with a parametrisation of their moment-by-moment appearances. We speculate that such a segmentation may form the initial stage of a hierarchical system that progressively separates the identity and appearance of more articulated visual elements, culminating in view-invariant object recognition.Author Summary: When we look at a visual scene, neurons in our eyes “fire” short, electrical pulses in a pattern that encodes information about the visual world. This pattern passes through a series of processing stages within the brain, eventually leading to cells whose firing encodes high-level aspects of the scene, such as the identity of a visible object regardless of its position, apparent size or angle. Remarkably, features of these firing patterns, at least at the earlier stages of the pathway, can be predicted by building “efficient” codes for natural images: that is, codes based on models of the statistical properties of the environment. In this study, we have taken a first step towards extending this theoretical success to describe later stages of processing, building a model that extracts a structured representation in much the same way as does the visual system. The model describes discrete, persistent visual elements, whose appearance varies over time—a simplified version of a world built of objects that move and rotate. We show that when fit to natural image sequences, features of the “code” implied by this model match many aspects of processing in the first cortical stage of the visual system, including: the individual firing patterns of types of cells known as “simple” and “complex”; the distribution of coding properties over these cells; and even how these properties depend on the cells' physical proximity. The model thus brings us closer to understanding the functional principles behind the organisation of the visual system.

Suggested Citation

  • Pietro Berkes & Richard E Turner & Maneesh Sahani, 2009. "A Structured Model of Video Reproduces Primary Visual Cortical Organisation," PLOS Computational Biology, Public Library of Science, vol. 5(9), pages 1-16, September.
  • Handle: RePEc:plo:pcbi00:1000495
    DOI: 10.1371/journal.pcbi.1000495
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000495
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000495&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1000495?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jörn-Philipp Lies & Ralf M Häfner & Matthias Bethge, 2014. "Slowness and Sparseness Have Diverging Effects on Complex Cell Learning," PLOS Computational Biology, Public Library of Science, vol. 10(3), pages 1-11, March.
    2. Laurence Aitchison & Máté Lengyel, 2016. "The Hamiltonian Brain: Efficient Probabilistic Inference with Excitatory-Inhibitory Neural Circuit Dynamics," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-24, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000495. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.