IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0184880.html
   My bibliography  Save this article

Large-scale cross-species chemogenomic platform proposes a new drug discovery strategy of veterinary drug from herbal medicines

Author

Listed:
  • Chao Huang
  • Yang Yang
  • Xuetong Chen
  • Chao Wang
  • Yan Li
  • Chunli Zheng
  • Yonghua Wang

Abstract

Veterinary Herbal Medicine (VHM) is a comprehensive, current, and informative discipline on the utilization of herbs in veterinary practice. Driven by chemistry but progressively directed by pharmacology and the clinical sciences, drug research has contributed more to address the needs for innovative veterinary medicine for curing animal diseases. However, research into veterinary medicine of vegetal origin in the pharmaceutical industry has reduced, owing to questions such as the short of compatibility of traditional natural-product extract libraries with high-throughput screening. Here, we present a cross-species chemogenomic screening platform to dissect the genetic basis of multifactorial diseases and to determine the most suitable points of attack for future veterinary medicines, thereby increasing the number of treatment options. First, based on critically examined pharmacology and text mining, we build a cross-species drug-likeness evaluation approach to screen the lead compounds in veterinary medicines. Second, a specific cross-species target prediction model is developed to infer drug-target connections, with the purpose of understanding how drugs work on the specific targets. Third, we focus on exploring the multiple targets interference effects of veterinary medicines by heterogeneous network convergence and modularization analysis. Finally, we manually integrate a disease pathway to test whether the cross-species chemogenomic platform could uncover the active mechanism of veterinary medicine, which is exemplified by a specific network module. We believe the proposed cross-species chemogenomic platform allows for the systematization of current and traditional knowledge of veterinary medicine and, importantly, for the application of this emerging body of knowledge to the development of new drugs for animal diseases.

Suggested Citation

  • Chao Huang & Yang Yang & Xuetong Chen & Chao Wang & Yan Li & Chunli Zheng & Yonghua Wang, 2017. "Large-scale cross-species chemogenomic platform proposes a new drug discovery strategy of veterinary drug from herbal medicines," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-20, September.
  • Handle: RePEc:plo:pone00:0184880
    DOI: 10.1371/journal.pone.0184880
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0184880
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0184880&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0184880?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peng Tian, 2011. "Convergence: Where West meets East," Nature, Nature, vol. 480(7378), pages 84-86, December.
    2. Hua Yu & Jianxin Chen & Xue Xu & Yan Li & Huihui Zhao & Yupeng Fang & Xiuxiu Li & Wei Zhou & Wei Wang & Yonghua Wang, 2012. "A Systematic Prediction of Multiple Drug-Target Interactions from Chemical, Genomic, and Pharmacological Data," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-14, May.
    3. Twan van Laarhoven & Elena Marchiori, 2013. "Predicting Drug-Target Interactions for New Drug Compounds Using a Weighted Nearest Neighbor Profile," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-6, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benoit Playe & Chloé-Agathe Azencott & Véronique Stoven, 2018. "Efficient multi-task chemogenomics for drug specificity prediction," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-34, October.
    2. Hansaim Lim & Aleksandar Poleksic & Yuan Yao & Hanghang Tong & Di He & Luke Zhuang & Patrick Meng & Lei Xie, 2016. "Large-Scale Off-Target Identification Using Fast and Accurate Dual Regularized One-Class Collaborative Filtering and Its Application to Drug Repurposing," PLOS Computational Biology, Public Library of Science, vol. 12(10), pages 1-26, October.
    3. Qing Ye & Chang-Yu Hsieh & Ziyi Yang & Yu Kang & Jiming Chen & Dongsheng Cao & Shibo He & Tingjun Hou, 2021. "A unified drug–target interaction prediction framework based on knowledge graph and recommendation system," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    4. Cheng Yan & Jianxin Wang & Wei Lan & Fang-Xiang Wu & Yi Pan, 2017. "SDTRLS: Predicting Drug-Target Interactions for Complex Diseases Based on Chemical Substructures," Complexity, Hindawi, vol. 2017, pages 1-10, December.
    5. Anna Cichonska & Balaguru Ravikumar & Elina Parri & Sanna Timonen & Tapio Pahikkala & Antti Airola & Krister Wennerberg & Juho Rousu & Tero Aittokallio, 2017. "Computational-experimental approach to drug-target interaction mapping: A case study on kinase inhibitors," PLOS Computational Biology, Public Library of Science, vol. 13(8), pages 1-28, August.
    6. Yong Liu & Min Wu & Chunyan Miao & Peilin Zhao & Xiao-Li Li, 2016. "Neighborhood Regularized Logistic Matrix Factorization for Drug-Target Interaction Prediction," PLOS Computational Biology, Public Library of Science, vol. 12(2), pages 1-26, February.
    7. Krisztian Buza & Ladislav Peška & Júlia Koller, 2020. "Modified linear regression predicts drug-target interactions accurately," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-18, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0184880. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.