IDEAS home Printed from https://ideas.repec.org/a/hin/complx/2713280.html
   My bibliography  Save this article

SDTRLS: Predicting Drug-Target Interactions for Complex Diseases Based on Chemical Substructures

Author

Listed:
  • Cheng Yan
  • Jianxin Wang
  • Wei Lan
  • Fang-Xiang Wu
  • Yi Pan

Abstract

It is well known that drug discovery for complex diseases via biological experiments is a time-consuming and expensive process. Alternatively, the computational methods provide a low-cost and high-efficiency way for predicting drug-target interactions (DTIs) from biomolecular networks. However, the current computational methods mainly deal with DTI predictions of known drugs; there are few methods for large-scale prediction of failed drugs and new chemical entities that are currently stored in some biological databases may be effective for other diseases compared with their originally targeted diseases. In this study, we propose a method (called SDTRLS) which predicts DTIs through RLS-Kron model with chemical substructure similarity fusion and Gaussian Interaction Profile (GIP) kernels. SDTRLS can be an effective predictor for targets of old drugs, failed drugs, and new chemical entities from large-scale biomolecular network databases. Our computational experiments show that SDTRLS outperforms the state-of-the-art SDTNBI method; specifically, in the G protein-coupled receptors (GPCRs) external validation, the maximum and the average AUC values of SDTRLS are 0.842 and 0.826, respectively, which are superior to those of SDTNBI, which are 0.797 and 0.766, respectively. This study provides an important basis for new drug development and drug repositioning based on biomolecular networks.

Suggested Citation

  • Cheng Yan & Jianxin Wang & Wei Lan & Fang-Xiang Wu & Yi Pan, 2017. "SDTRLS: Predicting Drug-Target Interactions for Complex Diseases Based on Chemical Substructures," Complexity, Hindawi, vol. 2017, pages 1-10, December.
  • Handle: RePEc:hin:complx:2713280
    DOI: 10.1155/2017/2713280
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2017/2713280.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2017/2713280.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/2713280?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Twan van Laarhoven & Elena Marchiori, 2013. "Predicting Drug-Target Interactions for New Drug Compounds Using a Weighted Nearest Neighbor Profile," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-6, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna Cichonska & Balaguru Ravikumar & Elina Parri & Sanna Timonen & Tapio Pahikkala & Antti Airola & Krister Wennerberg & Juho Rousu & Tero Aittokallio, 2017. "Computational-experimental approach to drug-target interaction mapping: A case study on kinase inhibitors," PLOS Computational Biology, Public Library of Science, vol. 13(8), pages 1-28, August.
    2. Krisztian Buza & Ladislav Peška & Júlia Koller, 2020. "Modified linear regression predicts drug-target interactions accurately," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-18, April.
    3. Benoit Playe & Chloé-Agathe Azencott & Véronique Stoven, 2018. "Efficient multi-task chemogenomics for drug specificity prediction," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-34, October.
    4. Hansaim Lim & Aleksandar Poleksic & Yuan Yao & Hanghang Tong & Di He & Luke Zhuang & Patrick Meng & Lei Xie, 2016. "Large-Scale Off-Target Identification Using Fast and Accurate Dual Regularized One-Class Collaborative Filtering and Its Application to Drug Repurposing," PLOS Computational Biology, Public Library of Science, vol. 12(10), pages 1-26, October.
    5. Chao Huang & Yang Yang & Xuetong Chen & Chao Wang & Yan Li & Chunli Zheng & Yonghua Wang, 2017. "Large-scale cross-species chemogenomic platform proposes a new drug discovery strategy of veterinary drug from herbal medicines," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-20, September.
    6. Yong Liu & Min Wu & Chunyan Miao & Peilin Zhao & Xiao-Li Li, 2016. "Neighborhood Regularized Logistic Matrix Factorization for Drug-Target Interaction Prediction," PLOS Computational Biology, Public Library of Science, vol. 12(2), pages 1-26, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:2713280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.