IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0254057.html
   My bibliography  Save this article

Spectral estimation for detecting low-dimensional structure in networks using arbitrary null models

Author

Listed:
  • Mark D Humphries
  • Javier A Caballero
  • Mat Evans
  • Silvia Maggi
  • Abhinav Singh

Abstract

Discovering low-dimensional structure in real-world networks requires a suitable null model that defines the absence of meaningful structure. Here we introduce a spectral approach for detecting a network’s low-dimensional structure, and the nodes that participate in it, using any null model. We use generative models to estimate the expected eigenvalue distribution under a specified null model, and then detect where the data network’s eigenspectra exceed the estimated bounds. On synthetic networks, this spectral estimation approach cleanly detects transitions between random and community structure, recovers the number and membership of communities, and removes noise nodes. On real networks spectral estimation finds either a significant fraction of noise nodes or no departure from a null model, in stark contrast to traditional community detection methods. Across all analyses, we find the choice of null model can strongly alter conclusions about the presence of network structure. Our spectral estimation approach is therefore a promising basis for detecting low-dimensional structure in real-world networks, or lack thereof.

Suggested Citation

  • Mark D Humphries & Javier A Caballero & Mat Evans & Silvia Maggi & Abhinav Singh, 2021. "Spectral estimation for detecting low-dimensional structure in networks using arbitrary null models," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-22, July.
  • Handle: RePEc:plo:pone00:0254057
    DOI: 10.1371/journal.pone.0254057
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0254057
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0254057&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0254057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vítor Lopes-dos-Santos & Sergio Conde-Ocazionez & Miguel A L Nicolelis & Sidarta T Ribeiro & Adriano B L Tort, 2011. "Neuronal Assembly Detection and Cell Membership Specification by Principal Component Analysis," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-16, June.
    2. Mark D Humphries & Kevin Gurney, 2008. "Network ‘Small-World-Ness’: A Quantitative Method for Determining Canonical Network Equivalence," PLOS ONE, Public Library of Science, vol. 3(4), pages 1-10, April.
    3. Catherine A Bliss & Christopher M Danforth & Peter Sheridan Dodds, 2014. "Estimation of Global Network Statistics from Incomplete Data," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-18, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Avena-Koenigsberger & Xiaoran Yan & Artemy Kolchinsky & Martijn P van den Heuvel & Patric Hagmann & Olaf Sporns, 2019. "A spectrum of routing strategies for brain networks," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-24, March.
    2. Brunetti, Celso & Harris, Jeffrey H. & Mankad, Shawn & Michailidis, George, 2019. "Interconnectedness in the interbank market," Journal of Financial Economics, Elsevier, vol. 133(2), pages 520-538.
    3. Xue Cui & Lu Yang, 2024. "Systemic risk and idiosyncratic networks among global systemically important banks," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(1), pages 58-75, January.
    4. Abbasiharofteh, Milad & Kogler, Dieter F. & Lengyel, Balázs, 2023. "Atypical combinations of technologies in regional co-inventor networks," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 52(10), pages 1-1.
    5. Ramirez-Arellano, Aldo & Hernández-Simón, Luis Manuel & Bory-Reyes, Juan, 2020. "A box-covering Tsallis information dimension and non-extensive property of complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    6. Belik, Ivan & Knudsen, Eirik Sjåholm, 2023. "Link on, Link off: Data-driven management of organizational networks for ambidexterity," Journal of Business Research, Elsevier, vol. 157(C).
    7. Aleenajitpong, Natdanai & Leemakdej, Arnat, 2021. "Venture Capital Networks in Southeast Asia: Network characteristics and cohesive subgroups," International Review of Financial Analysis, Elsevier, vol. 76(C).
    8. Giovanni Diana & Thomas T J Sainsbury & Martin P Meyer, 2019. "Bayesian inference of neuronal assemblies," PLOS Computational Biology, Public Library of Science, vol. 15(10), pages 1-31, October.
    9. Hu Lu & Shengtao Yang & Longnian Lin & Baoming Li & Hui Wei, 2013. "Prediction of Rat Behavior Outcomes in Memory Tasks Using Functional Connections among Neurons," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-11, September.
    10. Mayerhoffer, Daniel & Schulz-Gebhard, Jan, 2023. "Social segregation, misperceptions, and emergent cyclical choice patterns," BERG Working Paper Series 186, Bamberg University, Bamberg Economic Research Group.
    11. Heng Chen, 2023. "A lexical network approach to second language development," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-9, December.
    12. Weiwei Yan & Xin Wen & Yin Zhang & Sonali Kudva & Qian Liu, 2023. "The dynamics of Q&A in academic social networking sites: insights from participants, interaction network, response time, and discipline differences," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(3), pages 1895-1922, March.
    13. Dimitri Yatsenko & Krešimir Josić & Alexander S Ecker & Emmanouil Froudarakis & R James Cotton & Andreas S Tolias, 2015. "Improved Estimation and Interpretation of Correlations in Neural Circuits," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-28, March.
    14. David Samu & Anil K Seth & Thomas Nowotny, 2014. "Influence of Wiring Cost on the Large-Scale Architecture of Human Cortical Connectivity," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-24, April.
    15. Aswani Kumar Cherukuri & Radhika Shivhare & Ajith Abraham & Jinhai Li & Annapurna Jonnalagadda, 2021. "A Pragmatic Approach to Understand Hebbian Cell Assembly," International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), IGI Global, vol. 15(2), pages 73-95, April.
    16. Frank Emmert-Streib, 2013. "Structural Properties and Complexity of a New Network Class: Collatz Step Graphs," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-14, February.
    17. Commander, Simon & Poupakis, Stavros, 2020. "Political Networks across the Globe," IZA Discussion Papers 13103, Institute of Labor Economics (IZA).
    18. Aswani Kumar Cherukuri & Radhika Shivhare & Ajith Abraham & Jinhai Li & Annapurna Jonnalagadda, 2021. "A Pragmatic Approach to Understand Hebbian Cell Assembly," International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), IGI Global, vol. 15(2), pages 60-82, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0254057. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.