IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005068.html
   My bibliography  Save this article

The Flash-Lag Effect as a Motion-Based Predictive Shift

Author

Listed:
  • Mina A Khoei
  • Guillaume S Masson
  • Laurent U Perrinet

Abstract

Due to its inherent neural delays, the visual system has an outdated access to sensory information about the current position of moving objects. In contrast, living organisms are remarkably able to track and intercept moving objects under a large range of challenging environmental conditions. Physiological, behavioral and psychophysical evidences strongly suggest that position coding is extrapolated using an explicit and reliable representation of object’s motion but it is still unclear how these two representations interact. For instance, the so-called flash-lag effect supports the idea of a differential processing of position between moving and static objects. Although elucidating such mechanisms is crucial in our understanding of the dynamics of visual processing, a theory is still missing to explain the different facets of this visual illusion. Here, we reconsider several of the key aspects of the flash-lag effect in order to explore the role of motion upon neural coding of objects’ position. First, we formalize the problem using a Bayesian modeling framework which includes a graded representation of the degree of belief about visual motion. We introduce a motion-based prediction model as a candidate explanation for the perception of coherent motion. By including the knowledge of a fixed delay, we can model the dynamics of sensory information integration by extrapolating the information acquired at previous instants in time. Next, we simulate the optimal estimation of object position with and without delay compensation and compared it with human perception under a broad range of different psychophysical conditions. Our computational study suggests that the explicit, probabilistic representation of velocity information is crucial in explaining position coding, and therefore the flash-lag effect. We discuss these theoretical results in light of the putative corrective mechanisms that can be used to cancel out the detrimental effects of neural delays and illuminate the more general question of the dynamical representation at the present time of spatial information in the visual pathways.Author Summary: Visual illusions are powerful tools to explore the limits and constraints of human perception. One of them has received considerable empirical and theoretical interests: the so-called “flash-lag effect”. When a visual stimulus moves along a continuous trajectory, it may be seen ahead of its veridical position with respect to an unpredictable event such as a punctuate flash. This illusion tells us something important about the visual system: contrary to classical computers, neural activity travels at a relatively slow speed. It is largely accepted that the resulting delays cause this perceived spatial lag of the flash. Still, after three decades of debates, there is no consensus regarding the underlying mechanisms. Herein, we re-examine the original hypothesis that this effect may be caused by the extrapolation of the stimulus’ motion that is naturally generated in order to compensate for neural delays. Contrary to classical models, we propose a novel theoretical framework, called parodiction, that optimizes this process by explicitly using the precision of both sensory and predicted motion. Using numerical simulations, we show that the parodiction theory subsumes many of the previously proposed models and empirical studies. More generally, the parodiction hypothesis proposes that neural systems implement generic neural computations that can systematically compensate the existing neural delays in order to represent the predicted visual scene at the present time. It calls for new experimental approaches to directly explore the relationships between neural delays and predictive coding.

Suggested Citation

  • Mina A Khoei & Guillaume S Masson & Laurent U Perrinet, 2017. "The Flash-Lag Effect as a Motion-Based Predictive Shift," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-31, January.
  • Handle: RePEc:plo:pcbi00:1005068
    DOI: 10.1371/journal.pcbi.1005068
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005068
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005068&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael J. Berry & Iman H. Brivanlou & Thomas A. Jordan & Markus Meister, 1999. "Anticipation of moving stimuli by the retina," Nature, Nature, vol. 398(6725), pages 334-338, March.
    2. Gopathy Purushothaman & Saumil S. Patel & Harold E. Bedell & Haluk Ogmen, 1998. "Moving ahead through differential visual latency," Nature, Nature, vol. 396(6710), pages 424-424, December.
    3. John Schlag & Rick H. Cai & Andrews Dorfman & Ali Mohempour & Madeleine Schlag-Rey, 2000. "Extrapolating movement without retinal motion," Nature, Nature, vol. 403(6765), pages 38-39, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John A. Gaynes & Samuel A. Budoff & Michael J. Grybko & Joshua B. Hunt & Alon Poleg-Polsky, 2022. "Classical center-surround receptive fields facilitate novel object detection in retinal bipolar cells," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    2. Matteo Saponati & Martin Vinck, 2023. "Sequence anticipation and spike-timing-dependent plasticity emerge from a predictive learning rule," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Jason S Prentice & Olivier Marre & Mark L Ioffe & Adrianna R Loback & Gašper Tkačik & Michael J Berry II, 2016. "Error-Robust Modes of the Retinal Population Code," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-32, November.
    4. Gabriel D Puccini & Maria V Sanchez-Vives & Albert Compte, 2007. "Integrated Mechanisms of Anticipation and Rate-of-Change Computations in Cortical Circuits," PLOS Computational Biology, Public Library of Science, vol. 3(5), pages 1-13, May.
    5. Weston Cox & Brian J Fischer, 2015. "Optimal Prediction of Moving Sound Source Direction in the Owl," PLOS Computational Biology, Public Library of Science, vol. 11(7), pages 1-20, July.
    6. Andrea Pintimalli & Joseph Glicksohn & Fabio Marson & Tania Di Giuseppe & Tal Dotan Ben-Soussan, 2023. "Change in Time Perception Following the Place of Pre-Existence Technique," IJERPH, MDPI, vol. 20(4), pages 1-19, February.
    7. Roland W. Scholz, 2017. "Managing complexity: from visual perception to sustainable transitions—contributions of Brunswik’s Theory of Probabilistic Functionalism," Environment Systems and Decisions, Springer, vol. 37(4), pages 381-409, December.
    8. Jian K Liu & Tim Gollisch, 2015. "Spike-Triggered Covariance Analysis Reveals Phenomenological Diversity of Contrast Adaptation in the Retina," PLOS Computational Biology, Public Library of Science, vol. 11(7), pages 1-30, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005068. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.