IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005001.html
   My bibliography  Save this article

Isofunctional Protein Subfamily Detection Using Data Integration and Spectral Clustering

Author

Listed:
  • Elisa Boari de Lima
  • Wagner Meira Júnior
  • Raquel Cardoso de Melo-Minardi

Abstract

As increasingly more genomes are sequenced, the vast majority of proteins may only be annotated computationally, given experimental investigation is extremely costly. This highlights the need for computational methods to determine protein functions quickly and reliably. We believe dividing a protein family into subtypes which share specific functions uncommon to the whole family reduces the function annotation problem’s complexity. Hence, this work’s purpose is to detect isofunctional subfamilies inside a family of unknown function, while identifying differentiating residues. Similarity between protein pairs according to various properties is interpreted as functional similarity evidence. Data are integrated using genetic programming and provided to a spectral clustering algorithm, which creates clusters of similar proteins. The proposed framework was applied to well-known protein families and to a family of unknown function, then compared to ASMC. Results showed our fully automated technique obtained better clusters than ASMC for two families, besides equivalent results for other two, including one whose clusters were manually defined. Clusters produced by our framework showed great correspondence with the known subfamilies, besides being more contrasting than those produced by ASMC. Additionally, for the families whose specificity determining positions are known, such residues were among those our technique considered most important to differentiate a given group. When run with the crotonase and enolase SFLD superfamilies, the results showed great agreement with this gold-standard. Best results consistently involved multiple data types, thus confirming our hypothesis that similarities according to different knowledge domains may be used as functional similarity evidence. Our main contributions are the proposed strategy for selecting and integrating data types, along with the ability to work with noisy and incomplete data; domain knowledge usage for detecting subfamilies in a family with different specificities, thus reducing the complexity of the experimental function characterization problem; and the identification of residues responsible for specificity.Author Summary: The knowledge of protein functions is central for understanding life at a molecular level and has huge biochemical and pharmaceutical implications. However, despite best research efforts, a substantial and ever-increasing number of proteins predicted by genome sequencing projects still lack functional annotations. Computational methods are required to determine protein functions quickly and reliably since experimental investigation is difficult and costly. Considering literature shows combining various types of information is crucial for functionally annotating proteins, such methods must be able to integrate data from different sources which may be scattered, non-standardized, incomplete, and noisy. Many protein families are composed of proteins with different folds and functions. In such cases, the division into subtypes which share specific functions uncommon to the family as a whole may lead to important information about the function and structure of a related protein of unknown function, as well as about the functional diversification acquired by the family during evolution. This work’s purpose is to automatically detect isofunctional subfamilies in a protein family of unknown function, as well as identify residues responsible for differentiation. We integrate data and then provide it to a clustering algorithm, which creates clusters of similar proteins we found correspond to same-specificity subfamilies.

Suggested Citation

  • Elisa Boari de Lima & Wagner Meira Júnior & Raquel Cardoso de Melo-Minardi, 2016. "Isofunctional Protein Subfamily Detection Using Data Integration and Spectral Clustering," PLOS Computational Biology, Public Library of Science, vol. 12(6), pages 1-32, June.
  • Handle: RePEc:plo:pcbi00:1005001
    DOI: 10.1371/journal.pcbi.1005001
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005001
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005001&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sabrina de Azevedo Silveira & Raquel Cardoso de Melo-Minardi & Carlos Henrique da Silveira & Marcelo Matos Santoro & Wagner Meira Jr, 2014. "ENZYMAP: Exploiting Protein Annotation for Modeling and Predicting EC Number Changes in UniProt/Swiss-Prot," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-12, February.
    2. Alexandra M Schnoes & Shoshana D Brown & Igor Dodevski & Patricia C Babbitt, 2009. "Annotation Error in Public Databases: Misannotation of Molecular Function in Enzyme Superfamilies," PLOS Computational Biology, Public Library of Science, vol. 5(12), pages 1-13, December.
    3. Duncan P Brown & Nandini Krishnamurthy & Kimmen Sjölander, 2007. "Automated Protein Subfamily Identification and Classification," PLOS Computational Biology, Public Library of Science, vol. 3(8), pages 1-13, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui Fa & Domenico Cozzetto & Cen Wan & David T Jones, 2018. "Predicting human protein function with multi-task deep neural networks," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-16, June.
    2. Michal Brylinski & Daswanth Lingam, 2012. "eThread: A Highly Optimized Machine Learning-Based Approach to Meta-Threading and the Modeling of Protein Tertiary Structures," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-12, November.
    3. Thomas J Sharpton & Samantha J Riesenfeld & Steven W Kembel & Joshua Ladau & James P O'Dwyer & Jessica L Green & Jonathan A Eisen & Katherine S Pollard, 2011. "PhylOTU: A High-Throughput Procedure Quantifies Microbial Community Diversity and Resolves Novel Taxa from Metagenomic Data," PLOS Computational Biology, Public Library of Science, vol. 7(1), pages 1-13, January.
    4. Akira R Kinjo & Haruki Nakamura, 2012. "Composite Structural Motifs of Binding Sites for Delineating Biological Functions of Proteins," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-11, February.
    5. Yi-An Chen & Lokesh P Tripathi & Benoit H Dessailly & Johan Nyström-Persson & Shandar Ahmad & Kenji Mizuguchi, 2014. "Integrated Pathway Clusters with Coherent Biological Themes for Target Prioritisation," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-11, June.
    6. Matthew N Benedict & Michael B Mundy & Christopher S Henry & Nicholas Chia & Nathan D Price, 2014. "Likelihood-Based Gene Annotations for Gap Filling and Quality Assessment in Genome-Scale Metabolic Models," PLOS Computational Biology, Public Library of Science, vol. 10(10), pages 1-14, October.
    7. Wing-Cheong Wong & Sebastian Maurer-Stroh & Frank Eisenhaber, 2010. "More Than 1,001 Problems with Protein Domain Databases: Transmembrane Regions, Signal Peptides and the Issue of Sequence Homology," PLOS Computational Biology, Public Library of Science, vol. 6(7), pages 1-19, July.
    8. Stephen F Altschul & John C Wootton & Elena Zaslavsky & Yi-Kuo Yu, 2010. "The Construction and Use of Log-Odds Substitution Scores for Multiple Sequence Alignment," PLOS Computational Biology, Public Library of Science, vol. 6(7), pages 1-17, July.
    9. Yuval Bussi & Ruti Kapon & Ziv Reich, 2021. "Large-scale k-mer-based analysis of the informational properties of genomes, comparative genomics and taxonomy," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-27, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.