IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1000852.html
   My bibliography  Save this article

The Construction and Use of Log-Odds Substitution Scores for Multiple Sequence Alignment

Author

Listed:
  • Stephen F Altschul
  • John C Wootton
  • Elena Zaslavsky
  • Yi-Kuo Yu

Abstract

Most pairwise and multiple sequence alignment programs seek alignments with optimal scores. Central to defining such scores is selecting a set of substitution scores for aligned amino acids or nucleotides. For local pairwise alignment, substitution scores are implicitly of log-odds form. We now extend the log-odds formalism to multiple alignments, using Bayesian methods to construct “BILD” (“Bayesian Integral Log-odds”) substitution scores from prior distributions describing columns of related letters. This approach has been used previously only to define scores for aligning individual sequences to sequence profiles, but it has much broader applicability. We describe how to calculate BILD scores efficiently, and illustrate their uses in Gibbs sampling optimization procedures, gapped alignment, and the construction of hidden Markov model profiles. BILD scores enable automated selection of optimal motif and domain model widths, and can inform the decision of whether to include a sequence in a multiple alignment, and the selection of insertion and deletion locations. Other applications include the classification of related sequences into subfamilies, and the definition of profile-profile alignment scores. Although a fully realized multiple alignment program must rely upon more than substitution scores, many existing multiple alignment programs can be modified to employ BILD scores. We illustrate how simple BILD score based strategies can enhance the recognition of DNA binding domains, including the Api-AP2 domain in Toxoplasma gondii and Plasmodium falciparum.Author Summary: Multiple sequence alignment is a fundamental tool of biological research, widely used to identify important regions of DNA or protein molecules, to infer their biological functions, to reconstruct ancestries, and in numerous other applications. The effectiveness and accuracy of sequence comparison programs depends crucially upon the quality of the scoring systems they use to measure sequence similarity. To compare pairs of DNA or protein sequences, the best strategy for constructing similarity measures has long been understood, but there has been a lack of consensus about how to measure similarity among multiple (i.e. more than two) sequences. In this paper, we describe a natural generalization to multiple alignment of the accepted measure of pairwise similarity. A large variety of methods that are used to compare and analyze DNA or protein molecules, or to model protein domain families, could be rendered more sensitive and precise by adopting this similarity measure. We illustrate how our measure can enhance the recognition of important DNA binding domains.

Suggested Citation

  • Stephen F Altschul & John C Wootton & Elena Zaslavsky & Yi-Kuo Yu, 2010. "The Construction and Use of Log-Odds Substitution Scores for Multiple Sequence Alignment," PLOS Computational Biology, Public Library of Science, vol. 6(7), pages 1-17, July.
  • Handle: RePEc:plo:pcbi00:1000852
    DOI: 10.1371/journal.pcbi.1000852
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000852
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000852&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1000852?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Duncan P Brown & Nandini Krishnamurthy & Kimmen Sjölander, 2007. "Automated Protein Subfamily Identification and Classification," PLOS Computational Biology, Public Library of Science, vol. 3(8), pages 1-13, August.
    2. Robert K Bradley & Adam Roberts & Michael Smoot & Sudeep Juvekar & Jaeyoung Do & Colin Dewey & Ian Holmes & Lior Pachter, 2009. "Fast Statistical Alignment," PLOS Computational Biology, Public Library of Science, vol. 5(5), pages 1-15, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alejandro Ochoa & John D Storey & Manuel Llinás & Mona Singh, 2015. "Beyond the E-Value: Stratified Statistics for Protein Domain Prediction," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-21, November.
    2. Andrew F Neuwald & Stephen F Altschul, 2016. "Inference of Functionally-Relevant N-acetyltransferase Residues Based on Statistical Correlations," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-30, December.
    3. Andrew F Neuwald & Stephen F Altschul, 2016. "Bayesian Top-Down Protein Sequence Alignment with Inferred Position-Specific Gap Penalties," PLOS Computational Biology, Public Library of Science, vol. 12(5), pages 1-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi-An Chen & Lokesh P Tripathi & Benoit H Dessailly & Johan Nyström-Persson & Shandar Ahmad & Kenji Mizuguchi, 2014. "Integrated Pathway Clusters with Coherent Biological Themes for Target Prioritisation," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-11, June.
    2. Elisa Boari de Lima & Wagner Meira Júnior & Raquel Cardoso de Melo-Minardi, 2016. "Isofunctional Protein Subfamily Detection Using Data Integration and Spectral Clustering," PLOS Computational Biology, Public Library of Science, vol. 12(6), pages 1-32, June.
    3. Erick Moreno-Centeno & Richard M. Karp, 2013. "The Implicit Hitting Set Approach to Solve Combinatorial Optimization Problems with an Application to Multigenome Alignment," Operations Research, INFORMS, vol. 61(2), pages 453-468, April.
    4. Michiaki Hamada & Hisanori Kiryu & Wataru Iwasaki & Kiyoshi Asai, 2011. "Generalized Centroid Estimators in Bioinformatics," PLOS ONE, Public Library of Science, vol. 6(2), pages 1-20, February.
    5. Lewis Stevens & Isaac Martínez-Ugalde & Erna King & Martin Wagah & Dominic Absolon & Rowan Bancroft & Pablo Gonzalez de la Rosa & Jessica L. Hall & Manuela Kieninger & Agnieszka Kloch & Sarah Pelan & , 2023. "Ancient diversity in host-parasite interaction genes in a model parasitic nematode," Nature Communications, Nature, vol. 14(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000852. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.