IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1004011.html
   My bibliography  Save this article

Disrupted Calcium Release as a Mechanism for Atrial Alternans Associated with Human Atrial Fibrillation

Author

Listed:
  • Kelly C Chang
  • Jason D Bayer
  • Natalia A Trayanova

Abstract

Atrial fibrillation (AF) is the most common cardiac arrhythmia, but our knowledge of the arrhythmogenic substrate is incomplete. Alternans, the beat-to-beat alternation in the shape of cardiac electrical signals, typically occurs at fast heart rates and leads to arrhythmia. However, atrial alternans have been observed at slower pacing rates in AF patients than in controls, suggesting that increased vulnerability to arrhythmia in AF patients may be due to the proarrythmic influence of alternans at these slower rates. As such, alternans may present a useful therapeutic target for the treatment and prevention of AF, but the mechanism underlying alternans occurrence in AF patients at heart rates near rest is unknown. The goal of this study was to determine how cellular changes that occur in human AF affect the appearance of alternans at heart rates near rest. To achieve this, we developed a computational model of human atrial tissue incorporating electrophysiological remodeling associated with chronic AF (cAF) and performed parameter sensitivity analysis of ionic model parameters to determine which cellular changes led to alternans. Of the 20 parameters tested, only decreasing the ryanodine receptor (RyR) inactivation rate constant (kiCa) produced action potential duration (APD) alternans seen clinically at slower pacing rates. Using single-cell clamps of voltage, fluxes, and state variables, we determined that alternans onset was Ca2+-driven rather than voltage-driven and occurred as a result of decreased RyR inactivation which led to increased steepness of the sarcoplasmic reticulum (SR) Ca2+ release slope. Iterated map analysis revealed that because SR Ca2+ uptake efficiency was much higher in control atrial cells than in cAF cells, drastic reductions in kiCa were required to produce alternans at comparable pacing rates in control atrial cells. These findings suggest that RyR kinetics may play a critical role in altered Ca2+ homeostasis which drives proarrhythmic APD alternans in patients with AF.Author Summary: Atrial fibrillation is an irregular heart rhythm affecting millions of people worldwide. Effective treatment of this cardiac disorder relies upon our detailed knowledge and understanding of the mechanisms that lead to arrhythmia. Recent clinical observations have suggested that alternans, a phenomenon where the shape of the electrical signal in the heart alternates from beat to beat, may play an important role in this process, but the underlying mechanisms remain unknown. In this study, we use computational models to conduct a detailed examination of the causes and contributors to alternans associated with human atrial fibrillation. We find that in atria remodeled by atrial fibrillation, alternans appears near resting heart rates because several aspects of calcium cycling are disrupted in the atrial cells. In particular, the release and uptake of calcium from the cellular storage compartment, the sarcoplasmic reticulum, becomes imbalanced, leading to alternation in calcium signals from beat to beat. These findings provide important insights into the mechanisms of proarrhythmic alternans in human atrial fibrillation which may be used to develop novel therapeutic targets and treatment strategies in the future.

Suggested Citation

  • Kelly C Chang & Jason D Bayer & Natalia A Trayanova, 2014. "Disrupted Calcium Release as a Mechanism for Atrial Alternans Associated with Human Atrial Fibrillation," PLOS Computational Biology, Public Library of Science, vol. 10(12), pages 1-16, December.
  • Handle: RePEc:plo:pcbi00:1004011
    DOI: 10.1371/journal.pcbi.1004011
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004011
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004011&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1004011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stanley Nattel, 2002. "New ideas about atrial fibrillation 50 years on," Nature, Nature, vol. 415(6868), pages 219-226, January.
    2. Jussi T Koivumäki & Topi Korhonen & Pasi Tavi, 2011. "Impact of Sarcoplasmic Reticulum Calcium Release on Calcium Dynamics and Action Potential Morphology in Human Atrial Myocytes: A Computational Study," PLOS Computational Biology, Public Library of Science, vol. 7(1), pages 1-14, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael A Colman, 2019. "Arrhythmia mechanisms and spontaneous calcium release: Bi-directional coupling between re-entrant and focal excitation," PLOS Computational Biology, Public Library of Science, vol. 15(8), pages 1-34, August.
    2. Daniel M Lombardo & Flavio H Fenton & Sanjiv M Narayan & Wouter-Jan Rappel, 2016. "Comparison of Detailed and Simplified Models of Human Atrial Myocytes to Recapitulate Patient Specific Properties," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-15, August.
    3. Eberhard P Scholz & Paola Carrillo-Bustamante & Fathima Fischer & Mathias Wilhelms & Edgar Zitron & Olaf Dössel & Hugo A Katus & Gunnar Seemann, 2013. "Rotor Termination Is Critically Dependent on Kinetic Properties of IKur Inhibitors in an In Silico Model of Chronic Atrial Fibrillation," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-11, December.
    4. Cui, Xingran & Chang, Hung-Chi & Lin, Lian-Yu & Yu, Chih-Chieh & Hsieh, Wan-Hsin & Li, Weihui & Peng, Chung-Kang & Lin, Jiunn-Lee & Lo, Men-Tzung, 2019. "Prediction of atrial fibrillation recurrence before catheter ablation using an adaptive nonlinear and non-stationary surface ECG analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 9-19.
    5. Jussi T Koivumäki & Gunnar Seemann & Mary M Maleckar & Pasi Tavi, 2014. "In Silico Screening of the Key Cellular Remodeling Targets in Chronic Atrial Fibrillation," PLOS Computational Biology, Public Library of Science, vol. 10(5), pages 1-15, May.
    6. Narin, Ali & Isler, Yalcin & Ozer, Mahmut & Perc, Matjaž, 2018. "Early prediction of paroxysmal atrial fibrillation based on short-term heart rate variability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 56-65.
    7. Feng Ou & Nini Rao & Xudong Jiang & Mengyao Qian & Wei Feng & Lixue Yin & Xu Chen, 2013. "Analysis on Differential Gene Expression Data for Prediction of New Biological Features in Permanent Atrial Fibrillation," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-8, October.
    8. Yan-yan Li & Chuan-wei Zhou & Jian Xu & Yun Qian & Bei Wang, 2012. "CYP11B2 T-344C Gene Polymorphism and Atrial Fibrillation: A Meta-Analysis of 2,758 Subjects," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-7, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.