IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0076166.html
   My bibliography  Save this article

Analysis on Differential Gene Expression Data for Prediction of New Biological Features in Permanent Atrial Fibrillation

Author

Listed:
  • Feng Ou
  • Nini Rao
  • Xudong Jiang
  • Mengyao Qian
  • Wei Feng
  • Lixue Yin
  • Xu Chen

Abstract

Permanent Atrial fibrillation (pmAF) has largely remained incurable since the existing information for explaining precise mechanisms underlying pmAF is not sufficient. Microarray analysis offers a broader and unbiased approach to identify and predict new biological features of pmAF. By considering the unbalanced sample numbers in most microarray data of case - control, we designed an asymmetric principal component analysis algorithm and applied it to re - analyze differential gene expression data of pmAF patients and control samples for predicting new biological features. Finally, we identified 51 differentially expressed genes using the proposed method, in which 42 differentially expressed genes are new findings compared with two related works on the same data and the existing studies. The enrichment analysis illustrated the reliability of identified differentially expressed genes. Moreover, we predicted three new pmAF – related signaling pathways using the identified differentially expressed genes via the KO-Based Annotation System. Our analysis and the existing studies supported that the predicted signaling pathways may promote the pmAF progression. The results above are worthy to do further experimental studies. This work provides some new insights into molecular features of pmAF. It has also the potentially important implications for improved understanding of the molecular mechanisms of pmAF.

Suggested Citation

  • Feng Ou & Nini Rao & Xudong Jiang & Mengyao Qian & Wei Feng & Lixue Yin & Xu Chen, 2013. "Analysis on Differential Gene Expression Data for Prediction of New Biological Features in Permanent Atrial Fibrillation," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-8, October.
  • Handle: RePEc:plo:pone00:0076166
    DOI: 10.1371/journal.pone.0076166
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0076166
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0076166&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0076166?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stanley Nattel, 2002. "New ideas about atrial fibrillation 50 years on," Nature, Nature, vol. 415(6868), pages 219-226, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael A Colman, 2019. "Arrhythmia mechanisms and spontaneous calcium release: Bi-directional coupling between re-entrant and focal excitation," PLOS Computational Biology, Public Library of Science, vol. 15(8), pages 1-34, August.
    2. Daniel M Lombardo & Flavio H Fenton & Sanjiv M Narayan & Wouter-Jan Rappel, 2016. "Comparison of Detailed and Simplified Models of Human Atrial Myocytes to Recapitulate Patient Specific Properties," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-15, August.
    3. Eberhard P Scholz & Paola Carrillo-Bustamante & Fathima Fischer & Mathias Wilhelms & Edgar Zitron & Olaf Dössel & Hugo A Katus & Gunnar Seemann, 2013. "Rotor Termination Is Critically Dependent on Kinetic Properties of IKur Inhibitors in an In Silico Model of Chronic Atrial Fibrillation," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-11, December.
    4. Cui, Xingran & Chang, Hung-Chi & Lin, Lian-Yu & Yu, Chih-Chieh & Hsieh, Wan-Hsin & Li, Weihui & Peng, Chung-Kang & Lin, Jiunn-Lee & Lo, Men-Tzung, 2019. "Prediction of atrial fibrillation recurrence before catheter ablation using an adaptive nonlinear and non-stationary surface ECG analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 9-19.
    5. Narin, Ali & Isler, Yalcin & Ozer, Mahmut & Perc, Matjaž, 2018. "Early prediction of paroxysmal atrial fibrillation based on short-term heart rate variability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 56-65.
    6. Yan-yan Li & Chuan-wei Zhou & Jian Xu & Yun Qian & Bei Wang, 2012. "CYP11B2 T-344C Gene Polymorphism and Atrial Fibrillation: A Meta-Analysis of 2,758 Subjects," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-7, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0076166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.